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Scope of the Symposium

The aim of the York Doctoral Symposium (YDS) is to establish a platform for
dissemination and exchange of up-to-date scientific information on theoretical,
generic and applied areas of computing by giving doctoral students an opportu-
nity for presenting their ongoing research in computer science and scientific com-
puting. In particular, the symposium intends to bring together young researchers
who are active in this wide field and interested in an interdisciplinary exchange
of ideas and experience. The symposium also strives to promote research and
development for the improvement of interdisciplinary applications of computing.

Topics include, but are not restricted to:

– Artificial Intelligence
– Bioinformatics and Mathematics
– Computer Architectures
– Computer Vision
– Database Systems
– Distributed Systems
– Enterprise, System and Organisational Architectures
– High Integrity Systems Engineering
– Human-Computer Interaction
– Management and Information Systems
– Natural Language Processing
– Non-Standard Computation
– Programming Languages and Systems
– Real-Time Systems
– Signal Processing and Patter Recognition
– Theoretical Computer Science
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Bodies of Information e-Health and its
Philosophical Implications

Luciano Floridi1,2,3

1 Research Chair in Philosophy of Information and GPI, University of Hertfordshire
2 Faculty of Philosophy and IEG, University of Oxford
3 UNESCO Chair in Information and Computer Ethics.

Address for correspondence: Department of Philosophy, University of Hertfordshire,
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Abstract. The first part of the talk will introduce an interpretation of
the information turn as a fourth revolution. We are not immobile, at the
centre of the universe (Copernican revolution); we are not unnaturally
detached and diverse from the rest of the animal world (Darwinian rev-
olution); we are not Cartesian subjects entirely transparent to ourselves
(Freudian). We are now coming to see that we are not disconnected en-
tities, but rather informational organisms, sharing with biological agents
and engineered artefacts a global environment ultimately made of infor-
mation, the infosphere (Turing revolution). In the second part, the pre-
vious framework will be used to understand the development of e-Health
and its ethical issues. The fourth revolution is increasingly affecting our
views about human nature, its fragility and resilience, its health (includ-
ing mental health) and how we may shape it and make it flourish. We
shall see how human bodies may be interpreted informationally and what
this will mean, in the future, in terms of their well-being.
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Generating Formal Model Transformation
Specification Using a Template-based Approach

Asmiza A. Sani, Fiona Polack, and Richard Paige

Department of Computer Science,
University of York, Heslington, York. YO10 5DD, UK

asmiza,fiona,paige@cs.york.ac.uk

Abstract. Model transformation is a key activity in Model-Driven Engi-
neering (MDE). Transformations map between models, in different lan-
guages and/or at different levels of abstraction. Model transformation
introduces challenges for specification, verification and validation. Nor-
mally, MDE development requires planning which includes metamodel
and transformation design and a customized testing. This paper describes
ongoing work on a unified approach to specifying and verification of
model transformations using a template-based mapping to a formal spec-
ification language. A small example shows how diagrammatic models
mapped to Alloy so that the Alloy Analyzer can check transformation
properties.

Keywords: Model transformation, verification, template-based trans-
formation, formal methods

1 Introduction

A system can be described using a model. Models describe structural and behav-
ioral details, from a variety of perspectives. A model is formulated in a language
(e.g. a Domain Specific Modeling Language (DSML)) that represents the re-
quired system domain features.

Model Driven Engineering (MDE) is a model-centric approach to software
development. In MDE, every artifact is treated as a model. Whereas models in
conventional software engineering are guiding documents, in MDE, the models
are the first-class artifacts [18]. In MDE, a model conforms to a metamodel that
defines the syntax and semantic of model elements to represent the concepts and
features of a particular domain [4]. The metamodel and its model instances are
thus bound by syntactic and semantic mappings.

A model transformation takes a model as an input (source) and produces
another model as output (target). Figure 1 depicts concepts of model transfor-
mation. The transformation is specified (defined) at the metamodel level, and
can be executed by a transformation engine on models that conform to the
source metamodel. An example of MDE-style model transformation is found in
OMG’s Model Driven Architecture (MDA) [15]: Figure 2 shows examples of dif-
ferent MDA model viewpoints and concepts; model transformation is used as
the driver for evolving these models to a (partial) system implementation.
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Fig. 1. Concepts of model transformation [6].

Fig. 2. Fundamental MDA concepts: Viewpoints represent levels of abstraction: PIM
is the Platform Independent Model ; CIM is the Computation Independent Model ; PSM
is the Platform Specific Model. Based on [15]

Some challenges of MDE model transformation are specifying transforma-
tions precisely and abstractly [8]; analyzing model transformation [7]; and veri-
fication to ensure correct implementation. This paper outlines work-in-progress
on a template-based approach that formalizes (in Alloy) model transformation
specifications, to support verification of properties through use of existing formal
tools (Alloy Analyzer). The paper focuses on a simple example of a transforma-
tion specification from a UML class diagram to a relational database.

2 Verifying model transformations

A transformation engine executes a transformation specification written in a
transformation language. Of the various transformation languages and tools,
Query/Views/Transformation (QVT) is the OMG’s de facto standard [16], whilst
ETL [12] and ATL [10] are widely-used hybrid languages. MOLA [11] and SiTRa
[1] are examples of imperative model transformation languages, whilst Tefkat
[13] uses a declarative approach. (See [12] for a review of model transforma-
tion languages and tools.) Checking model transformations conventionally re-
quires custom methods. Formal verification methods can be used to ensure the
well-formedness of model transformation specifications, and to check that the
specification produces a correct transformation. A formal specification gives a
mathematical statement of the required properties of a system, whilst omitting
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details of how the properties are to be achieved [19]. Available approaches to for-
mal verification uses Constructive Type Theory [17]; OCL invariants [14, 5]; and
coloured Petri nets[13]. However, none provides wide-ranging, tool-supported
verification for model transformation.

3 Proposed approach

MDE does not traditionally use formal methods. In considering formal verifica-
tion of model transformation, it is necessary to protect developers from expo-
sure to too much formalism. To produce a practical formal approach to verifying
transformation, Alloy [9] is selected. Alloy is a lightweight formal specification
language derived from Z [19], with similarities to object-oriented structure and
OCL. These features can be exploited by formally expressing the structure and
behaviour of models to be transformed. Alloy is declarative, and can be used
in a relational or a state-based way, so Alloy expressions should be capable of
representing most model transformation approaches. The Alloy Analyzer tool
automatically analyses specifications and reports using a graphical notation, re-
ducing the need for users to have mathematical knowledge.

Alloy specifications comprise atoms and relations, both of which have prop-
erties defined by fact and predicate expressions. The facts and predicates are
used to generate instances. The Alloy Analyzer tool uses assert expressions and
the check command to determine whether an instance property holds; if it does
not, then the tool generates a counter-example.

Anastasakis et al. in [3] shows how Alloy can be use to verify model trans-
formation but to automatically produce an Alloy specification, the first stage
is to map Alloy to a diagrammatic notation (eg. transML [8]), that represents
transformation structural and behavioral conditions. Metamodels and diagram-
matic transformation notation are converted to Alloy using automated template-
instantiation (based on the GeFoRME approach [2]). Figure 3 is an overview
of the technique. At this stage, a catalogue of templates is under development,
based on examples of transformation specifications represented in UML-like syn-
tax. Templates exist for both structural and behavioural transformation pat-
terns, and the analysis assertions needed for verification.

3.1 Application example

The approach is illustrated using a fragment of a transformation specification
that converts a UML Class diagram to a relational database schema. Figure
4 shows the metamodels. The transformation specification here comprises two
transformation rules: Class to Table (C2T) and and Attribute to Column (A2C).
Figure 5 shows the transformation rules applied to the metamodels.

Figure 6 shows three templates used to generate an Alloy specification from
UML (T1 to T3). Template T4 generates an Alloy representation of a trans-
formation specification, as a mapping from source elements to target elements.
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Fig. 3. Overview of the technique for template-based Alloy analysis of transformation
specifications

Fig. 4. Metamodel fragments of (a) Source: UML Class source metamodel (b) Target:
database table metamodel

Fig. 5. Transformation rules to transform a Class to a Table
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Currently, the mappings are written directly in Alloy. An extract of the instan-
tiation is shown in Figure 7. The complete Alloy transformation specification
for the example in Figure 5, generated from the diagrams in Figure 4 and Alloy
mapping rules, is given in the Appendix.

Fig. 6. Some templates to generate Alloy representations of UML fragments and trans-
formation rules: placeholders for names to be inserted from the metamodel are in angle
brackets

4 Conclusion and future work

The example used in this paper shows how a formal model transformation
specification in Alloy is generated by instantiating templates via diagrammatic
notations representing a small set of structural patterns. Currently, the well-
formedness rules for the transformation rules and assertions expressions are
manually defined to enable validation of transformation using the Alloy Ana-
lyzer tools: research is in progress on formalizing transformation rules in existing
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Fig. 7. How to apply the template to generate Alloy specification

transformation languages. Analysis of the execution result of the specification
is conducted manually by visually tracing each instance to detect any abnormal
occurrence.

To achieve the goal of unifying specification and verification of transforma-
tion, including formalization of OCL/EOL for behavioral conditions and identi-
fying test patterns for model transformation which then represented by Alloy’s
assert and check expression fragments enables automatic verification of the spec-
ification. Ultimately, a collection of patterns for specifying and checking concepts
of model transformation, supported by tools, will aid planning and design of a
correct and reliable transformation.
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Appendix: Alloy transformation and verification of Figure
4 and 5

one s i g C l a s s i f i e r {}
s i g Str {}
s i g Class extends C l a s s i f i e r {

name : one Str ,
a t t r s : some Attr ibute

}
s i g Att r ibute {

name : one Str ,
cbe longs : one Class

}
//Well−formedness r u l e : At t r ibute s of Class connected by a t t r

r e l a t i o n c
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f a c t {
a l l a : Att r ibute , c : Class | c −> a in a t t r s
a l l a : Att r ibute , c : Class | a −> c in cbe longs }

// t a r g e t : r e l a t i o n a l database metamodel
s i g Table{

name : one Str ,
c o l s : some Column ,
pKey : one Column }

s i g Column{
name : one Str ,
tbe l ongs : one Table }

//Well−formedness r u l e : Column of Table connected by c o l s and
pKey r e l a t i o n

f a c t {
a l l t : Table , c o l : Column | t −> c o l in c o l s
a l l c o l : Column , pk : Table | pk −> c o l in pKey }

// t rans fo rmat ion
s i g Mapping{

C2T: Class some −> one Table ,
A2C: Att r ibute some −> one Column }

// t rans fo rmat ion wel l−formedness r u l e s C2T and A2C
f a c t C2T{

a l l c : Class , t : Table , m: Mapping | c −> t in m.C2T =>
c . name = t . name

Class <: a t t r s in ( Class ) one −> one ( Att r ibute ) }
f a c t T2PKColumn{

a l l t : Table , c : Column , m: Mapping | t −> c in m.
T2PKColumn }

f a c t A2C{
a l l a : Attr ibute , c : Column , m: Mapping | a −> c in m.A2C => a .

name = c . name }
// a s s e r t i o n s f o r v a l i d a t i n g t rans fo rmat ion
a s s e r t SameNameC2T{
a l l c : Class , t : Table | c . name = t . name }
a s s e r t SameNameA2C{
a l l a : Attr ibute , c : Column | a . name = c . name }
a s s e r t SameNumAttributeColumn{
a l l a : Attr ibute , c : Column|#a =#c }

// check
check SameNameC2T f o r 2
check SameNameA2C f o r 1
check SameNumAttributeColumn f o r 2
run {}
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Abstract. Search-based testing can be difficult for commercial applica-
tions of software because of the many potential points of failure. Research
into test data generation often focusses on small programs that are not
representative of the larger systems used in industry. This research in-
troduces a new categorisation of software that can be used to evaluate
testing techniques against a variety of software behaviour. These cate-
gories are used to evaluate YETI, a random robustness testing tool, with
open source software. The experiments are limited to one class for each
category, but still a number of faults are found for each one.

Keywords: Random testing; Software categorisation; YETI

1 Introduction

Random search is one of the most straightforward and inexpensive testing strate-
gies [5]. It covers the whole input-space, so is useful in providing an indication of
the general characteristics of software [7]. It is sometimes seen as inferior toother
strategies because it does not take into account the syntactic or semantic struc-
ture of a program [6]. Random testing may need to produce many test cases in
order to find a fault, but it produces each one with very little computational
expense. Random testing is able to reveal more faults per unit time than a di-
rected search [8]. The key to success with random testing is the availability of
an oracle that can quickly verify the results of executing each test case, without
the need for human involvement [5]. Unfortunately, it can be just as difficult to
produce an oracle that works correctly as to develop the software without any
bugs.

The York Extendible Testing Infrastructure (YETI) addresses this problem
by considering run-time errors, such as incorrect casting or division by zero, in
the absence of assertion violations or contracts. This forms a robustness check
that can test software even when there is no explicit oracle. YETI can produce
a significant amount of test data in a short space of time, making up to 106

calls per minute [11]. YETI can be used to test software written in a number
of different programming languages, including Java. This research will evaluate
YETI in testing different categories of Java software.
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2 Related Work

Many tools have been developed to test software robustness with random input
data. JCrasher [2], Jartege [10], Eclat [12] and AutoTest [1] are some examples.
YETI is at least 3 orders of magnitude faster than these tools [11] and as men-
tioned earlier, is programming language independent. Research has also been
conducted, guiding test data with specific vulnerable points, or the paths that
are taken during its execution [4][3]. These techniques promise to be more likely
to find faults, but they require further computation. It would be an interesting
experiment to compare their effectivness against YETI.

3 Categories of Software

Software may be categorised by size, programming paradigm or the purpose
for which it has been designed. It is easy to make distinctions on structural
or developmental issues, but this reveals little about the expected behaviour of
the software. Functional categories, such as those used by the Microsoft Asset
Inventory Service [9], are difficult to distinguish for testing because they share
common behaviour. The ideal form of categorisation would be one that is easily
calculable, but also reveals useful information on the behaviour of software.

To aid the evaluation of YETI, we present five categories of software be-
haviour: functional, open, progressive, user and timed. These categories are not
meant to represent the complete behaviour of a software system, but rather to
provide insight into the variety of behaviour that has to be tested. For exam-
ple, a web-based application that involves interaction with users, may also make
progressive updates to a database, but both behaviours will need to be tested:

Functional behaviour involves significant numerical calculation and/or al-
gorithmic operations. Examples range from core data structures like java.Integer
up to complex libraries such as the Bouncy Castle cryptography suite. This is
the kind of behaviour that is often targeted in traditional testing research.

Open behaviour makes use of features that are shared between multiple
parties, with potentially different goals. These systems may also feature a het-
erogeneity of languages, platforms and architectures.

Progressive behaviour maintains and develops a data source over time.
It must always leave the data source in a legal state. The data source may
potentially be infinite, or only bounded by the available memory. Typically, this
is addressed by dividing it into manageable sections, for example a byte stream.

User behaviour may be command-line, graphical or even web-based. Run-
time errors can occur when an unsolicited GUI event is triggered. It is difficult
to test the many paths through software featuring user behaviour because of the
many ways that the components of its interface may be manipulated.

Timed behaviour includes a real-time performance requirement and typ-
ically some form of concurrency. Failures in concurrent systems may result in
unexpected deadlock and race conditions. These can be difficult to avoid and
expensive to detect because they occur as an interaction between classes.
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4 Experiments

The software used in the following experiments is taken from industry, because
most programs used to evaluate testing tools are too small-scale to represent a
particular category. Relevant failures are those that have not occurred before
whilst testing. Hundreds of thousands of random test cases were produced for
each class, in an attempt to identify relevant failures. Each test run lasted ten
minutes and is presented here with the number of relevant failures and the time
it took to find them. Unfortunately, there was only enough time to represent
each category with one class. This affects the conclusions that can be made.

Functional

JBullet1 is a port of the Bullet Physics Library2 for soft and rigid body dynamics.
The original (unported) version is has been used for big budget films such as 2012
and Hancock, as well as games such as Grand Theft Auto IV and Madagascar
Kartz. The first port into Java was made in January 2008 and since then there
have been 10 further releases, each adding new features and correcting bugs.
This experiment used the latest available version of JBullet, released in June
2009 and based on the 2.70-beta1 version of the Bullet Physics Library.

The class used in this experiment is a graphics demo provided with JBul-
let, com.bulletphysics.demos.movingconcave. Figure 1 shows two relevant failures
raised whilst testing the class as a result of null pointer exceptions, both of which
were found very quickly by YETI. It is possible that more errors would have been
found if assertions had been included in the code to ensure accurate calculations.
Without the use of assertions, it is difficult to test for incorrect calculations or
delays that affect the worst case execution time for particular inputs.

Fig. 1. Functional System Faults

1 http://jbullet.advel.cz/
2 http://bulletphysics.org/
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Open

Jigsaw3 is a web-server platform produced by a small team of developers from
the World Wide Web Consortium (W3C). It was initially started to experiment
with new technologies and, although it lacks some of the features of commercial
web servers, it still leads the way in terms of web-protocols and interfaces. We
experimented with Jigsaw 2.2.6, which is the latest available version. The Jigsaw
development team place an emphasis on readable code and clear documentation
and in spite of its experimental status, Jigsaw has been shown to be more robust
than the average web-server [13].

Open systems face dangers from attackers outside the system and the possi-
bility of conflict between different modules inside the system. In this experiment,
we consider the jigsaw.ssi.SSIFrame class. This class ensures that HTML docu-
ments are parsed correctly at the server side. It is important that this software
possesses fault tolerance and is able to resist tampering. Therefore, it was a
surprise to find that it contained at least 19 run-time errors (see figure 2). The
errors were caused by null pointer and array index out of bounds exceptions.
Although they might be masked by the interaction of classes, these errors could
still cause problems under certain circumstances.

Fig. 2. Open System Faults

3 http://www.w3.org/Jigsaw/
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Progressive

Apache Derby4 is relational database management system, implemented in Java.
The software was first released in 1996 and has been developed by a number of
companies before being made open source in 2004. It supports a high level of
SQL standards-compliance, but still maintains a small footprint of just 2MB,
making it easily testable. For this experiment we used version 10.6.1.0, which is
the latest available version of the software.

We tested the org.apache.derby.impl.sql.SQLParser class. This class is used
to parse queries written in SQL before they are applied to the database. Figure 3
shows that YETI revealed 47 relevant failures, found in two stages. The first 40
errors were found very quickly, but it took longer for the remaining seven to be
detected. The errors found in this case were caused by null pointer exceptions.

Fig. 3. Progressive System Faults

User

Swing5 is the primary Java toolkit for graphical user interfaces. It features over
thirty standard interface components and has a highly partitioned architecture,
making it possible to plug-in new components with ease. The Swing API was
first integrated into the core set of Java classes in December 1998. Since then,
its performance has been increased for Java SE 6 in 2006. The javax.swing.JTree
class is used to display hierarchical data. It generated more run-time errors than
any other in these experiments (52 in total). The failures were revealed gradually
throughout the course of the experiment (see figure 4). It is likely that even more
failures would have been found if this experiment were left to run.

4 http://db.apache.org/derby/
5 http://java.sun.com/javase/technologies/desktop/
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Fig. 4. User System Faults

Timed

Javolution6 is a real-time library aimed at making Java applications faster and
more predictable. It has been used by various other projects, such as Math-
Eclipse7, a symbolic maths engine, and Resoa8, a cloud computing project. It
was first released in October 2004 and has been through 19 major software
releases before version 5.5, used in this experiment. We investigated the javolu-
tion.util.FastMap class, providing a real-time safe hash map (see figure 5). YETI
does not perform any kind of timing analysis. Therefore, it is possible that some
failures were missed involving missed deadlines or interaction between multiple
threads. It would be interesting to evaluate whether the run-time errors predicted
by YETI are good predictors of timing related failures.

Fig. 5. Timed System Faults

6 http://javolution.org/
7 http://sourceforge.net/projects/matheclipse/
8 http://www.resoa.org/
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5 Limitations and Future Work

The biggest limitation to this research is the decision to represent each category
with just one class. It is difficult to make a thorough analysis, because fully rep-
resentative classes are hard to find. Some classes are overly specialised andothers
too general to demonstrate the challenges particular to each category. For the
results to be useful in determining the relevant software fault characteristics, it
would be necessary to analyse a number of classes for each category.

Another limitation is that, without a test oracle, YETI is only able to observe
the occurrence of run time exceptions and not whether the software actually pro-
duced the correct results. This is a limitation of the testing technique and cannot
be resolved without the inclusion of an explicit specification or assertions in the
code. One of the main reason for using YETI is that it is able to analyse soft-
ware for which there is no oracle or for which the specification is inaccurate. An
experiment into the relationship between run-time errors and incorrect results
may be worthwhile.

6 Conclusions

In conclusion, YETI has been shown capable of finding faults across a wide
range of software, even without the use of an explicit oracle. Random robustness
tests struggle to find failures that only occur for a small subset of the input
domain, but the speed with which YETI produces test cases allows it to find
many failures with relatively little computational expense. We have shown that
YETI is useful for testing a wide variety of software, particularly in the absence
of a test oracle.
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Abstract. This paper introduces a versatile operator for modifying CSP
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1 Introduction

In the broadest sense, a formal specification of a system defines a set of correct-
ness properties. For an implementation of a system to satisfy its specification, it
must satisfy all the correctness properties present in the specification. Perhaps
the most obvious examples of correctness properties are concerned with func-
tionality, but other non-functional requirements of software that can be precisely
articulated — such as performance, reliability and resource usage — may also
be interpreted as correctness properties.

Confidentiality properties are a class of non-functional correctness properties
of software systems that are related to information security. Informally, a confi-
dentiality property codifies an upper bound on what information a user of the
system can deduce about the system’s behaviour from its local observation of
that behaviour. A system’s specification may include confidentiality properties to
stipulate that an implementation of the system must not (directly or indirectly)
leak secret information to untrusted users.

This paper describes an approach for extending the CSP process algebra [1,2]
to assist in the construction of software systems that are guaranteed to uphold
specified confidentiality properties. Our main contribution is an operator over
CSP processes that is parametrised by an encoding of confidentiality properties.
This operator can be applied to processes in two ways. First, it may be used
to verify that a process satisfies a specified confidentiality property. Secondly,
the operator may be applied to any process S to calculate a process S ′ that is
guaranteed to satisfy a confidentiality property.

This paper is structured as follows. Section 2 gives an overview of CSP and
information flow security and outlines how CSP processes can be analysed for
information leaks. Section 3 defines the algebraic semantics of the operator and
Section 4 details a worked example in applying the operator to a simple process.
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In Section 5, we identify techniques for verifying processes against confidentiality
properties. We examine how our approach relates to the wider field of information
flow security in Section 6 and summarise our work in Section 7.

2 CSP and Confidentiality

CSP (Communicating Sequential Processes) is a formal notation for modelling
the patterns of behaviour of concurrent and distributed systems [1,2].1 In CSP,
a process interacts with its environment by engaging in events over an alphabet
(set) of named channels: for example, the process a → b → S performs an event
on channel ‘a’ followed by an event on ‘b’, and then behaves according to S .

CSP features a rich algebra of operators for giving structure to processes,
whose semantics are formally defined by a denotational model. In the traces
model, a trace records the history of a process as a sequence of events. The
semantics of a process S in the traces model is characterised by the prefix-closed
set of all traces that S may perform: for example, if S = a → b → Stop, then
traces [[S ]] = {⟨⟩, ⟨a⟩, ⟨a, b⟩}.

Consider the following recursive CSP process M and its associated trace set:

M , (h → l → M ) ⊓ (k → Stop)

traces [[M ]] =

{
⟨⟩, ⟨h⟩, ⟨h, l⟩, ⟨k⟩, ⟨h, l , h⟩, ⟨h, l , h, l⟩, ⟨h, l , k⟩,
⟨h, l , h, l , h⟩, ⟨h, l , h, l , h, l⟩, ⟨h, l , h, l , k⟩, . . .

}
M non-deterministically chooses either to perform a ‘h’ event followed by a

‘l ’ event and then behave as M again, or to perform a ‘k ’ event and then refuse
(forever) to perform any events (Stop).

We model a user of a process (representing a system) as an agent which can
observe some — but not necessarily all — of the channels of the process. We
define a user’s window to be the subset of a process’s alphabet that contains
all events visible to that user. Hence, a user’s observation of a trace tr is the
projection of tr through the user’s window w , denoted by tr � w . 2

Suppose that M ’s environment consists of a “low-level” (untrusted) user L
with window L = {l}. If L knows the structure of M then, given an observation
ϕ of M viewed through L, L can deduce all traces of M that are consistent with
ϕ. We capture this intuition by defining an inference function on processes: [3,4]

infer(M ,L, ϕ) , {tr | tr ∈ traces [[M ]] ∧ tr � L = ϕ} (1)

The traces in infer(M ,L, ϕ) are indistinguishable from L’s perspective: if this
set contains more than one trace, then L cannot determine which of these traces
describes the actual behaviour of M . Nevertheless, L may still be able to identify
common features of all traces in this inference set and so deduce sensitive or
valuable information about the actual behaviour of M .

We may insist that M satisfies the following security requirement:

1 Readers unfamiliar with CSP notation may wish to consult the Appendix.
2 tr � A is the trace given by removing from tr all events that are absent from set A.
For example, ⟨a, b, a, c, a, b⟩ � {b, c} = ⟨b, c, b⟩.
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“The occurrence of ‘h’ events should be kept secret from L.”

While L cannot observe ‘h’ events directly (since h /∈ L), if L makes an
observation ⟨l⟩ of M , it could deduce that a ‘h’ event must have occurred in M ’s
execution by calculating the inference set associated with ⟨l⟩:

infer(M ,L, ⟨l⟩) = {⟨h, l⟩, ⟨h, l , h⟩, ⟨h, l , k⟩} (2)

Since all traces in infer(M ,L, ⟨l⟩) feature an initial ‘h’ event, we conclude
that M does not satisfy our security requirement. (Of course, M satisfies other
requirements: for example, L cannot establish that ‘k ’ has occurred, because for
each L observation ϕ of M , infer(M ,L, ϕ) contains traces without a ‘k ’ event.)

3 Securing Processes by Extension

In this section, we describe a systematic approach for extending processes to
satisfy given security requirements. We write <P ,Q>(S ) — where S , P and Q
are CSP processes — to denote a process S ′ that behaves like S but, whenever
S ′ can perform an activity that conforms to a behaviour of P , then S ′ may (at
the environment’s discretion) instead perform an alternative activity conforming
to Q (instead of P) and then proceed to behave as S as if it had performed P .

We select the P and Q processes to express a confidentiality property. For
example, we could encode the requirement that L cannot deduce the occurrence
of ‘h’ events followed by ‘l ’ events in M as a <P ,Q> pair by writing:

<h → l → Skip, l → Skip>

Here, P specifies that an occurrence of a ‘h’ event immediately prior to an ‘l ’
event is classed as confidential. Q specifies that the absence of the ‘h’ event rep-
resents a plausible non-confidential “cover story” for the confidential behaviour.
When applied to a process, the <P ,Q> operator masks the occurrence of P
behaviours from L’s perspective, by inserting alternative Q behaviours that L
cannot distinguish from P behaviours. Hence, it is essential that the projections
of P and Q through L’s window are identical. Formally:

{tr � L | tr ∈ traces [[P ]]} = {tr � L | tr ∈ traces [[Q ]]} (3)

We define the semantics of <P ,Q> by giving a collection of algebraic laws
formulated in terms of the standard CSP operators. Hence, the application of
<P ,Q> to a process S is carried out by recursively applying these laws accord-
ing to the structure of S . Since <P ,Q> is defined in this way, a denotational
semantics for <P ,Q> can be calculated straightforwardly.3

We insist that P , Q and S are divergence-free4 processes, to simplify our
reasoning and to make certain that applying <P ,Q> to S can never introduce

3 Due to space constraints, we do not provide the denotational semantics here.
4 A process is said to diverge if it can perform “an infinite sequence of internal actions”
(without interacting with its environment) [2].
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divergence into S . Furthermore, we require that P and Q always terminate
by performing Skip as their final action. This condition ensures that applying
<P ,Q> to a terminating process produces a terminating process.

In what follows, we require a notation for describing the behaviour of a pro-
cess S after having performed an activity modelled by process P . The predicate
S appP is satisfied if and only if S features a trace prefixed by a complete trace
of P (with the final ‘X’ generated by the Skip in P omitted):

S appP , ∃ tr ∈ traces [[S ]] • tr a ⟨X⟩ ∈ traces [[P ]] (4)

We write S#P to denote the process that behaves as S after executing any
P trace that is a trace of S . Of course, S#P is well-defined only if S appP holds.

S#P is defined in terms of the CSP “after” operator — where S/tr represents
all possible behaviours of S after behaving as tr [2, §1.3.4] — as follows:5

S#P , ⊓{S/tr | tr a ⟨X⟩ ∈ traces [[P ]] ∧ tr ∈ traces [[S ]]} (5)

3.1 Distribution through Choice

As we saw in Section 2, S ⊓ T is a process that chooses non-determistically to
behave either as S or as T . Likewise, the process S 2 T can behave as S or as
T , but allows the environment to select between them.

The semantics of <P ,Q> applied to processes that offer a choice of multiple
initial events is given by distributing <P ,Q> across each branch of the choice:

Law 1

<P ,Q>(S ⊓ T ) , <P ,Q>(S ) ⊓ <P ,Q>(T ) (6)

<P ,Q>(S 2 T ) , <P ,Q>(S ) 2 <P ,Q>(T ) (7)

3.2 Stop and Skip

Two fundamental processes in CSP are Stop (deadlock) and Skip (termination).
Applying <P ,Q> to Stop or Skip has no effect, because Stop can never perform
any P activity. Likewise, since Skip can only ever extend the trace with the
(invisible) signal event X, Skip cannot perform any P activity.

Law 2 Stop and Skip are unaffected by applying <P ,Q>.

5 Notation: ⊓{S1, . . . ,Sn} may be read as S1 ⊓ . . . ⊓ Sn .
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3.3 Prefixing

We now consider the semantics of <P ,Q>(a → S ), where ‘a’ is any event.
If P cannot perform any events — that is, if P = Skip — the semantics of

<P ,Q> are not defined by the laws below. We consider such a choice for P
improper, because it does not represent any confidential activity.

Law 3 states that if a → S cannot behave as P (as when ‘a’ is not an initial
event of P), then we can safely move the <P ,Q> operator to S .

Law 3 Provided that ¬ (a → S ) appP:

<P ,Q>(a → S ) , a → <P ,Q>(S ) (8)

We need a prefix law to handle cases where a → S may perform an activity
encoded by P (i.e. (a → S ) appP holds). In such cases, we require that a → S is
extended with the behaviours of Q to ensure that L cannot determine that a P
behaviour has occurred. When P and Q do not share the same initial events, the
operator should extend a → S to offer the environment the choice of performing
Q instead of P . This effect is codified by Law 4.

Law 4 Provided that S appX holds:

<a → X , b → Y>(a → S ) ,
(

a → <a → X , b → Y>(S )
2 b → Y o

9 <a → X , b → Y>(S#X )

)
(9)

Law 4 allows S ′ = <a → X , b → Y>(a → S ) to behave as b → Y whenever
it can behave as a → X . After behaving as b → Y , S ′ reverts to behaving as
it would have done after performing as a → X . Law 4 employs deterministic
choice between a → X and b → Y to ensure that S ′ must always offer b → Y
to the environment whenever it can offer a → X .

Up to now, we have considered cases where confidential activities are masked
by adding appropriate cover story activities. Alternatively, a cover story may
take the form of the absence of a confidential activity by setting Q = Skip. The
semantics of <P ,Skip>(a → S ) are not given by Law 4. Hence, we introduce a
new law to accommodate cases where Q = Skip.

Law 5 Provided that S appX holds:

<a → X ,Skip>(a → S ) ,
(

a → <a → X ,Skip>(S )
2 <a → X ,Skip>(S#X )

)
(10)

Assuming that L cannot distinguish a → X from Skip, this law generates a
process that masks the occurrence of a → X from L’s perspective.

3.4 Operator Disposal

If we can prove that S never behaves according to P (i.e. S never performs a
confidential activity at any point in its execution), we can be sure that it is
unnecessary to introduce the cover story Q within S . If this condition holds,
then we can safely remove the <P ,Q> operator from S .
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Law 6 When ∀ s • ¬ (S/s) appP holds, <P ,Q>(S ) is equal to S.

This law can be justified by appealing to the repeated application of Law 3
to the expansion of S , in the context of the other laws.

4 Worked Example

Together, these laws are sufficient for applying the <P ,Q> operator to simple
CSP processes. Let M ′ = <h → l → Skip, l → Skip>(M ). We derive the CSP
process equal to M ′ — using the laws of <P ,Q> and CSP — as follows:

<h → l → Skip, l → Skip>(M )

= { definition of M }
<h → l → Skip, l → Skip>((h → l → M ) ⊓ (k → Stop))

= { distribute operator through internal choice (Law 1) }(
<h → l → Skip, l → Skip>(h → l → M )

⊓ <h → l → Skip, l → Skip>(k → Stop)

)
= { k → Stop cannot behave as h → l → Skip (Law 3) }(

<h → l → Skip, l → Skip>(h → l → M )
⊓ k → <h → l → Skip, l → Skip>(Stop)

)
= { applying to Stop has no effect (Law 2) }
<h → l → Skip, l → Skip>(h → l → M ) ⊓ k → Stop

= { h → l → M is confidential (Law 4) }(
h → <h → l → Skip, l → Skip>(l → M )

2 l → Skip o
9 <h → l → Skip, l → Skip>((l → M )#(l → Skip))

)
⊓ k → Stop

= { carry prefix (Law 3); unfold S#P (Equation 5) }(
h → l → <h → l → Skip, l → Skip>(M )

2 l → Skip o
9 <h → l → Skip, l → Skip>(

d
{M })

)
⊓ k → Stop

= { simplify }(
h → l → <h → l → Skip, l → Skip>(M )

2 l → <h → l → Skip, l → Skip>(M )

)
⊓ k → Stop

= { fold M ′ (twice) }
(h → l → M ′ 2 l → M ′) ⊓ k → Stop

The inference set associated with the L observation ⟨l⟩ of M ′ is:

infer(M ′,L, ⟨l⟩) = {⟨l⟩, ⟨l , k⟩, ⟨h, l⟩, ⟨h, l , h⟩, ⟨h, l , k⟩}

Observe that infer(M ,L, ⟨l⟩) ⊆ infer(M ′,L, ⟨l⟩) (see Equation 2). Hence, if L
observes ⟨l⟩, it cannot deduce any more about the behaviour of M ′ as it could
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about the behaviour of M . More importantly, infer(M ,L, ⟨l⟩) features traces free
of ‘h’ events, which implies that L cannot establish that M ′ has performed ‘h’, in
keeping with our security requirement. In the next section, we present theorems
for proving that this requirement is upheld for all of L’s observations of M ′.

5 Verification and Refinement

We claim that <P ,Q>(S ) must satisfy the confidentiality property encoded by
P and Q by appealing to the following theorem.

Theorem 1 (L cannot deduce P). Given any L-observation ϕ of <P ,Q>(S ),
L can never establish (with certainty) that a P activity has taken place.

This theorem is justified from the semantics of <P ,Q> by establishing that
the process <P ,Q>(S ) always permits a Q activity to be performed in place
of a P activity. Since we insist that P and Q yield the same observations to L
(Equation 3) — and that after performing Q , <P ,Q>(S ) behaves as it would
after performing P (Law 4) — it must be the case that if L’s inference set

contains a trace s a p a s ′ (where p a ⟨X⟩ ∈ traces [[P ]]), then it also contains a

trace sa q a s ′ (where q a ⟨X⟩ ∈ traces [[Q ]]). It follows that L can never deduce
from its observation of S that a confidential P activity has been performed.

<P ,Q> is an idempotent operator. (The proof follows by applying structural
induction to each of the laws presented in Section 3.) It is therefore necessary
to apply <P ,Q> to a process just once, to obtain a process that respects Theo-
rem 1. We can appeal to this result to characterise secure processes algebraically.

Theorem 2 (Verifying Security). Given a process S such that <P ,Q>(S ) =
S, S must satisfy the confidentiality property encoded by <P ,Q>.

We now discuss the relationship between the <P ,Q> operator and refine-
ment. It has long been known that refining a secure process may result in an
insecure process [4,5]. This problem arises because non-determinism may serve
two purposes in process specifications: to avoid describing “don’t-care” imple-
mentation details (underspecification) and to ensure the behaviour of the pro-
cess is unpredictable from L’s perspective. It follows that näıvely resolving non-
determinism within a process S (by refinement) may result in the removal of
cover story behaviours from S . In turn, this may introduce new sources of in-
formation flow to L — that were absent from S — that allow L to deduce the
presence of confidential activity in the refined process.

The standard CSP refinement relation is failures-divergences refinement [2],
which corresponds to the resolution of (finite) non-determinism in processes:
S ⊓ T is refined by S (and T ).

The process M ′ (see Section 4) can be refined to:

M ′
0 , (h → l → M ′

0 2 l → k → Stop) or M ′
1 , k → Stop



www.manaraa.com

26 Michael J. Banks, Jeremy L. Jacob

Both of these processes satisfy our security requirement, since L cannot de-
duce the occurrence of a ‘h’ event by observing either of these processes through
its window. It is perhaps tempting to claim that all refinements of a process
<P ,Q>(S ) satisfy the confidentiality property encoded by <P ,Q>, but this is
not so. Consider the process:

M ′
2 , (h → l → k → Stop) 2 l → (h → l → k → Stop 2 l → k → Stop)

M ′
2 is a refinement of M ′. However, if L makes the observation ⟨l , k⟩ of M ′

2,
then it can deduce that ‘h’ must have occurred, since the inference set associated
with that observation contains only the trace ⟨h, l , k⟩. This result indicates that it
may be necessary to re-apply the <P ,Q> operator after performing refinement.

6 Related Work

The canonical notion of information flow security is noninterference, which char-
acterises the absence of any information flow about a high-level user’s interac-
tions with a system to low-level users [6]. While approaches for verifying that sys-
tems satisfy noninterference-like properties have been studied extensively, they
are not widely used in practice, because it is often necessary to allow users to
exchange data. Our confidentiality properties are weaker than noninterference,
but are better suited for capturing practical security requirements than nonin-
terference, since they permit non-secret information to flow to low-level users.

Our formalisation of confidentiality properties is loosely based on work by
Mantel [7], who devised a “schema” condition for verifying that a system does
not leak confidential information, expressed in terms of a set of confidential traces
and a mapping from confidential traces to cover story traces. We specialise this
approach by directly encoding confidential and cover story activities as processes.
While the <P ,Q> operator is less general than Mantel’s schema, it enables us
to manipulate a CSP process using CSP itself and thereby allows us to provide
an algebraic characterisation of whether a process is secure in Theorem 2.

Our method of verifying that a process satisfies a confidentiality property
is related to Roscoe et al.’s low-level determinism test for CSP processes [8].
This test identifies whether a low-level user’s observations of a process S can
be encoded as a deterministic process: if so, the actions of other users cannot
influence the observations of S made by L, which implies that S satisfies nonin-
terference. In contrast, we insist only that L’s observations cannot be perturbed
by the occurrence of confidential activities.

Finally, and more generally, there is a connection between our operator and
aspect-oriented programming (AOP). AOP encourages software developers to
implement the secondary aspects of a program (such as logging or user authori-
sation checks) separately from its core functionality [9]. A variant of our operator
could potentially be used to support the construction of systems in an AOP style:
for instance, the first argument of the operator would specify the “join points”
in a program at which an aspect should be triggered, while the second argument
would specify an aspect’s behaviour.
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7 Conclusion

In this paper, we have defined an algebraic operator for rewriting CSP processes
to ensure they uphold particular security requirements. Applying this operator
to a process guarantees that the resulting process satisfies the confidentiality
property encoded by the operator. This suggests that the operator holds promise
for constructing software that is “secure by design”.

A potential drawback of using the operator is that adding cover stories to
a process may violate functional requirements on the process’s behaviour (such
as safety properties). This difficulty may be mitigated by carefully selecting the
cover stories associated with a confidential activity. However, it may be impos-
sible to avoid this difficulty altogether when developing systems to satisfy both
functionality and confidentiality requirements, since these requirements place op-
posing constraints on the information flow from a system to its users [4]. Indeed,
there is a trade-off between functionality and confidentiality requirements: if the
customer specifies a strong confidentiality property (such as noninterference) for
a system, then it may be necessary to weaken the functional requirements on
the system’s design (and vice versa).

We believe that the application of the operator to CSP models exhibiting
finite behaviour can be (partially) automated, with the assistance of model-
checking tools (such as FDR [10]) to determine the points in a process’s ex-
ecution where it can perform confidential activities. However, the problem of
automatically analysing a larger CSP model in this way may be intractable or
undecidable, especially in the presence of state variables or unbounded non-
determinism. Furthermore, we have left the semantics of the operator undefined
for processes expressed using the full algebra of CSP. An important topic for
future work is to identify laws for applying the operator to concurrent processes.

On a final note, taking a formal approach to security engineering can help
us to gain confidence that a computer system does not leak secret information
to low-level users, but it is unwise to assume that any system implementation
is secure in all circumstances. In particular, we have not addressed potential
sources of information leakage within a system’s implementation (such as its
responsiveness or power consumption) that are not modelled by its specification.
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A CSP Notation

This appendix describes some of the fundamental CSP operators informally.
(For a more comprehensive description, the reader is directed to the various
introductory tutorials on CSP that are available, such as Davies’ tutorial [11].)

Prefix The process a → S waits until the environment is ready to accept an
‘a’ event, then performs an ‘a’ event and subsequently behaves as S .

Non-deterministic choice The process S ⊓ T non-deterministically chooses
to behave either as S or as T . The environment cannot influence how the
non-determinism is resolved.

Deterministic choice The process S 2 T offers the environment a choice
between S and T , wherever possible. For instance, a → S 2 b → S accepts
either an ‘a’ or a ‘b’ event, before behaving as S .

Sequence The process S o
9 T behaves as S until reaching Skip (Section 3.2),

whereupon the process continues to behave as T .

In addition, CSP features a variety of operators for composing processes in
parallel, hiding the occurrence of internal events from the environment, condi-
tional choice (if-then-else) and iteration.
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Abstract. In this paper we investigate different methods of selecting seed exam-
ples and their effect on learning first order rules in ILP. Based on large experi-
mental results we concluded that they have significant impact on accuracies, the
number of rules and the speed of induced models.

1 Introduction

Inductive logic programming (ILP), is concerned with inducing first-order clausal mod-
els from examples and background knowledge [7]. ILP systems, such as PROGOL [6]
and ALEPH [11], learn to generalise rules of the form Head←Body1 from positive and
negative examples (training examples) such that they can be used to predict future un-
seen examples. PROGOL and ALEPH learners follow a seed-example-driven approach
to learn a theory that explains the positive examples (sufficiency condition) and not the
negative examples (necessity condition). A learner typically starts by taking a single
training example at a time, called a seed example, use it generates a single rule based
on this example an ensure that it generalises to other existing examples. The learner
evaluates the quality of a considered rule using an evaluation measure such as compres-
sion that favours pure rules that only cover positive examples and penalises long rules
that contains many literals.

ILP systems follows the separate and conquer (SAC) paradigm implementing the
covering algorithm where examples that have been covered by a newly accepted rule are
removed from the set of training examples. The learning proceed by picking up a new
seed example from the remaining training examples and the same procedure is repeated
until no training example is left or no further rules can be induced for the remaining
ones. PROGOL, as a case in point, takes the seed examples one by one sequentially and
blindly as they are presented in the training files.

We observed that changing the order of the seed examples, on several problems, has
an impact on the learning task and that was the main motivation of our work. We argue
that ordering the seed examples can improve the behaviour of such systems. Hence, if
there is a way to enhance the selection mechanism, we might be able to improve the
quality of induced rules produced by such example-driven induction systems. Such im-
provement might be exemplified by having more accurate models, having more compact
models and/or generating faster models.

The key problem is finding a criteria to order or rank the seed examples upon it
before the learning is undertaken. During the learning phase, a learner should be able to

1 Head is a single literal and Body is a conjunction of literals.
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pick up seed examples in a selected order. All what is known about these examples is
contained in the background knowledge including the class label. Therefore, one may
think of using statistical methods that look into the distribution of elements appear in
the background knowledge of a given domain w.r.t. each class and use them to compute
scores or probabilities over the examples. These scores or probabilities may be used to
order examples accordingly as in probabilistic models such as Naive Bayes (NB) classi-
fier [5] or LexRank (LR) ranker [4]. However, it is not feasible to apply such methods in
an ILP context directly due to the complex relational structure that imposes dependen-
cies between the structural predicates and that invalidate the independencey assumption
that holds for NB and LR. After all, the idea is not to have a ranker that predicts a total
ordering over examples but to selectively pass the examples to an existing ILP classifier
in a way that improve its performance.

In this paper we present a new approach Selecting Seed Examples (SSE) that feed
training examples to PROGOL selectively. SSE simply evaluates the difficulty of all
examples, order them according to their difficulties and learn their classification rules
w.r.t. to that order. SSE is done in three stages which will be discussed in details in
Section 2.

As to the authors’ knowledge there are no published research investigated the effect
of seed examples’ bias in ILP. The reason why this issue has not received much attention
by the machine learning community might be due to the naive assumption that they have
no, or little effect on the learning process. This paper will show that a simple ordering
can results in a significance effect on the learning process and; therefore, the learning
outcome.

Details of our approach are given in Section 2. Results of our approach compared
to PROGOL’s default method and a random method over twenty datasets are shown in
Section 3. Section 4 summaries and concludes our work in this paper.

2 Selecting Seed Examples

SSE tries order examples according to their difficulties in a pre-learning process. This
is done in three different stages. Given mode declarations (language bias), background
knowledge, type definitions and the training examples, PROGOL learns some rules,
called basic rules BR, in the usual way. This is the first stage of our approach. We use
the BR to order the examples based on the frequencies of examples covered by each
rule in the second stage. The underlying idea is that the examples are presented to the
PROGOL again in the third and last stage but this time in a selected order determined
by the second stage and used to induce the final set of rules R that represents the output
model of the learning system. The ordering in the second stage reflects how hard or
easy to cover the examples during the learning process. There are three more variations
of the methodology used in the second stage as will be seen later.

In SSE we are introducing two main selection mechanisms: ascending and descend-
ing, called Ascend and Descend respectively. The descending mechanism is done by or-
dering2 the examples from the most difficult example to cover, where none of the basic

2 Note that ordering the negative examples is not necessary as the negative examples are gener-
ally not selected as seed examples in seed-example-driven ILP systems.
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rules or few number of basic rules learned in stage 1 cover them, to the least difficult
example, where examples are covered by many basic rules learned in stage 1. On the
other hand the ascending mechanism is done by ordering the examples in the opposite
way.

Generally speaking we are interested in comparing the results of learning from or-
dered examples and learning from PROGOL’s default approach, where the seed ex-
amples are selected regarding to their sequence in the training file blindly. Therefore,
in the default approach the examples are learned in the common way by introducing
mode declarations, background knowledge, type definitions and the training examples
to PROGOL directly without any pre-ordering mechanism. A similar experiment with
a random ordering of the examples has been conducted as well, called Random.

While Default and Random are done in a single and straight forward stage, both
ordering mechanisms, Ascend and Descend, take three stages to be performed. There
are four different variations of SSE approach: ordering on the bases of rules, weighted
rules, partial rules and weighted partial rules. Since we have two ordering mechanisms,
Ascend and Descend, with these four variations of the SSE approach we will end up
with eight methods as can be seen in Table 1 in addition to PROGOL and Random.

Method Abbr. Method Abbr.
Descending Rules DR Descending Weighted Rules DWR
Ascending Rules AR Ascending Weighted Rules AWR
Descending Partial Rules DPR Descending Weighted Partial Rules DWPR
Ascending Partial Rules APR Ascending Weighted Partial Rules AWPR
PROGOL’s default PROGOL PROGOL’s Random Random

Table 1. Table shows the eight methods of SSE approach, which are used to order the examples, in addition to PROGOL’s
default and Random, that can be seen at the last, and their abbreviations.

It deserves mention that the procedure applied to the Random method can be seen
in Stage 1 of SEE approach. The importance of this stage for SSE is to produce the
basic rules 3 BR, Definition 1, that will be used in Stage 2 to achieve the ordering. Stage
1 remains the same for all the eight methods. In the following subsections we will
explain each one of the four variations of SSE approach with respect to the ascending
and descending mechanisms in more details.

Definition 1 (Basic Rule). A basic rule bri is the ith rule that appear in the learned
model of Stage 1 in SSE approach and used for the purpose of evaluating and ordering
the seed examples.

2.1 SSE with Rules

This is the simplest and most general SSE method among all the eight. There are three
basic stages that can be seen in Algorithm 1. As mentioned earlier, the main aim of
Stage 1 is to produce the basic rules model BR to be used as a criteria of measuring

3 Basic rules: because these rules do not form the final model in the ordering mechanisms but
they are importance to order the examples in the second stage only.
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the difficulties of the seed examples but not to be considered in the final classification
model.

Definition 2 (Difficulty of example). Let X be a set of all training examples, xi ∈ X is
an example, E is the total number of training examples, BR is a set of rules and cover is
a boolean coverage function defined in Equation 2, then a difficulty of the i-th example
di f (xi) can be measured by summing the total number of rules br j ∈ BR that cover xi
as follows:

di f (xi) =
|BR|

∑
j=1

cover(br j,xi) (1)

cover(br j,xi) =

{
1 ; br j covers xi
0 ; otherwise (2)

The difference between Descend and Ascend comes in Stage 2 where the examples
are ordered according to their difficulties in a descending or ascending order respec-
tively. The difficulties are measured according to the coverage of all the basic rules on
each example. The difficulty of an example is defined in 2. The higher the number of
rules that cover an example the less difficult the example is and the vice versa. In As-
cend the examples are ordered from the least difficult examples, which are covered by
the most number of basic rules, to the most difficult ones, which are covered by the
smallest number of basic rules. On the other hand, the ordering of the examples is done
in the opposite way for Descend method. Stage 3 in SSE with Rules algorithm presents
the seed examples to PROGOL for the second time but this time they will be learned
according to the ordering made in the second stage, descending or ascending.

2.2 SSE with Partial Rules

In the previous method, the first stage was used to generate the basic rules. The basic
rules were used later in the second stage to perform the ordering for Ascend and De-
scend. It is not hard to imagine that if the number of basic rules were quite small,e.g.
|BR| < 5, the impact of Ascend and Descend can not be noticed especially with the
existence of ties, when many examples covered by exactly the same number of rules.
Aiming at widening our experimental scale and obtaining a larger amount of basic rules,
another method, SSE with partial rules, has been applied in order to derive a better se-
lection of seed examples.

The idea of partial rules inspired by [10] where rules are broken down into smaller
parts called partial rules and assigned some weights with a neural network algorithm
called Winnow during the learning phase. When an unseen example is encountered the
partial rules that cover that particular example and their weights are used to predict its
class. Since sometimes it is hard to classify examples with rules under the existence of
noise and missing background knowledge or even in the case of rule clashes4 [1], the

4 Rule clash happens when more than one rule belonging to different classes cover same example
or same subset of examples.
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aim of using partial rules is to allow extra flexibility by relaxing the most interesting
rules [1, 10].

Similarly, we would like to allow extra flexibility in our SSE technique by dividing
the rules into smaller parts that hopefully will give a better estimation of how difficult
the examples are. Our definition of a partial rule can be seen in Definition 3.

Definition 3 (Partial rule). A partial rule pr of a rule r is a rule that inherits the same
head (consequent) literal as the original rule and all or subset of its body (antecedent)
literals that collectively form a first-order feature which is defined in 4.

Definition 4 (First-order feature). A first-order feature5 is a conjunction of zero or
more structural literals and at least one functional literal6 and meets the following four
conditions: a structural literal consumes one of the variables already introduced; a
functional literal consumes the variables introduced by structural literals or the head
literal; a variable is introduced in a feature is consumed by a structural literal, a func-
tional literal, or the head literal; and a variable in the head literal must be consumed
within the feature.

Definition 5 (Structural Literal). A literal l : p(A,B) is said to be structural ⇐⇒
there is a component/object relationship between A and B. Otherwise, the literal is
functional.

Noticeably, the number of examples covered by a rule will always ≤ the number of
examples covered by a part of that rule as a part of a rule is more general than the rule
itself. Thus, partial rules may help in revealing more information about the difficulties
of the examples. As in SSE with rules, examples covered by many partial rules are
less difficult then the ones covered by no or fewer number of partial rules. Hence, with
partial rules we will get even more evidence of their difficulties.

Not every rule can be boiled down into parts when applying the partial rule algo-
rithm as a consequence of having singleton features. However, generally this method
will generate much more basic partial rules BPR that may give a better estimation of
the difficulty of seed examples and; therefore, it may help to acquire better ordering of
seed examples.

The only modification in learning with partial rules in comparison with the previ-
ous algorithm, SSE with Rules, is the use of CollectPartialRules function instead of
CollectRules. The rest of the algorithm remains the same but applied to partial rules
instead of rules this time.

2.3 Learning with Weighted Rules and Weighted Partial Rules

In the previous two methods, the difficulty of an example was measured with regard
to the number of basic rules or basic partial rules that cover that particular example.
However, it can be noticed that the basic rules or partial rules themselves carry some
extra information about how general or specific they are and such information is ignored

5 Our definition of the first-order feature is an adaptation of the Definition 6 in [3]
6 A functional literal can also be called a property
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in the previous two techniques. It makes more sense to use such kind of information to
gain further improvement.

In order to enhance our methods and incorporate such extra information that may
improve the sensitivity of measuring the difficulty of each example, two new methods
that assign weights for the basic rules as well as the basic partial rules are introduced.
Since there is no difference between the process of assigning the weights for basic rules
and basic partial rules, we will just explain the weighted basic rules and the reader is
referred to Section 2.2 where the difference between the two was discussed.

Instead of computing the difficulty of an example xi as the number of basic rules
that cover it, Equation 1, here we additionally multiply the boolean coverage function
by the weight of basic rules as defined in 6. This is done under the assumption that a
weight of a rule reflects its specificity (how specific it is) and can be used to evaluate
the difficulties of the examples accordingly.

Definition 6 (Weighted difficulty of example). Let X be a set of all examples, xi ∈X is
an example, E is the total number of training examples, BR is a set of basic rules, cover
is a boolean coverage function defined in Equation 2, and W is a set of weights such

that ∀br j ∈ BR there exists
{

w j ∈W |w j =
∑

xE
xi cover(br j ,xi)

E

}
. Then a weighted difficulty

of the i-th example wdi f (xi) can be computed as follows:

wdi f (xi) =
|BR|

∑
j=1

cover(br j,xi).w j (3)

As can be seen from Definition 6, every basic rule br j is weighted according to its
coverage on all the training examples, the weight are normalised and thus 1 ≥ w j ≥ 0.
A value close to one means that a basic rule covers many examples and hence it is
a very general rule. A value close to 0 means that a basic rule covers small number of
examples and hence it is a very specific one. When computing a difficulty of an example
in equation 3, the weights are taken into account this time.

To explain the difference between SSE with Rules and SSE with Weighted Rules
method let us have a look at Table 2 and consider a case of having five examples and
three rules. The difficulties of the five examples with regards to the basic rules and
weighted basic rules methods can be seen in column 5 and 6 respectively. The final
ordering of examples for both methods in descending and ascending order is given in
the last four columns. As can be noticed from Table 2, br1 is generalised over the most
number of examples compared to the other two rules, as it covers 3 examples, and hence
it is regarded as the least specific one. Both br2 and br3 cover 2 examples. With SSE
with Rules, x2 and x4 have the same difficulty values even though x4 is covered by
the least specific rule, r1. On the other hand, SSE with Weighted Rules method allows
a better assessment of the example difficulties. It decreases the difficulty value of x2
indicating that it is more difficult to cover than x2 with regard to the weights assigned
to each partial rule.

Selecting seed examples with weighted rules and weighted partial rules algorithms
use a new modified version of CalculatingDi f f iculty() function that implements the
new difficulty function shown in Equation 3.
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br1 br2 br3 di f wdi f di f wdi f
Ascend Descend Ascend Descend

x1 0 0 1 1 0.4 3 3 5 1
x2 0 1 1 2 0.8 1 5 2 4
x3 1 0 0 1 0.6 4 2 3 3
x4 1 1 0 2 1.0 2 4 1 5
x5 1 0 0 1 0.6 5 1 4 2
w j 0.6 0.4 0.4

Table 2. A simple demonstration of calculating the difficulties with SSE with Rules and SSE with Weighted Rules methods
over a set of five examples. Columns 2-4 show the boolean coverage of rules over examples and their weights at the last row.
The last four columns show the ordering of the examples (indicated by indices) in Ascend and Descend methods with and
without rule weights (column 5 and 6 respectively).

3 Empirical Evaluation

The ten methods discussed earlier and shown in Table 1 have been applied to twenty
binary datasets both relational and propositional7. The examples for each dataset are
10-fold-cross validated in order to average the results over 10 separate runs. Each fold
is generated randomly for all the methods except PROGOL. In addition, a further ran-
domisation has been done within each fold itself. As for the eight SSE methods, a
randomisation is also done when ordering examples ascending and descending in the
second stage when ties are encountered.

Friedman test has been used for evaluating the performance of each method against
all the others. It is a non-parametric test equivalent to the repeated-measures ANOVA
[2]. Given a particular performance aspect, the Friedman test ranks the wins and losses
of each method, averages them over each data set, and compares these average ranks.
In our case the performance is measured according to three aspects: accuracy, number
of rules and speed resulted from using each one of the 10 methods on PROGOL.

The post-hoc Nemenyi test was used to compare the absolute difference between the
average rank of two methods against the critical difference CD. If difference between
the average rank of two methods ≥ CD then there is a significant difference between
the two methods in favour of the one with the highest average rank; otherwise, the null
hypothesis can not be rejected. Moreover, Bonferroni-Dunn test has been applied to
test the performance of each method against the default performance of PROGOL as a
control method. A graphical illustration of the Nemenyi and Bonferroni-Dunn post-hoc
tests have been drawn for each one of the three performance aspects. For more details
about Friedman test the reader is referred to [2].

The post-hoc test results of applying Friedman test on 20 datasets w.r.t. accuracies,
number of rules and running time are shown in Figure 1, 2 and 3 respectively.

Accuracy: Generally speaking the performance of all the 10 methods are quite close
when looking at Figure 1. The p-value calculated by Friedman test reveals no signifi-
cance difference at p < 0.10 between all the involved methods regarding the accuracy.
However the reader can see that PROGOL’s default approach comes last due to acquir-
ing a rank > 6 in 14 out of 20 datasets and accordingly it gained the worst average rank.
We draw the post-hoc Nemenyi test here just for the clarification purpose. As Friedman
test showed that the null hypotheses can not be rejected at p < 0.10, no method is better

7 The propositional data sets have been transformed into prolog format in the obvious way.
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than any other, it is illustrated by thick line connects all the methods together in Figure
1. However, the post-hoc Bonferroni-Dunn test shows that there is a significant differ-
ences at p < 0.10 in favour of Random, DWR, AR, DR and DPR against PROGOL
having PROGOL as a control method.

Compactness: All the four ascending methods, DR, DWR, DPR and DWPR, ranked
the top four methods as they produce the lowest number of rules indicating the highest
compactness. All the four methods are significantly better when compared to PRO-
GOL in Bonferroni-Dunn test and almost all,, except of DWR, in Nemenyi test. The
ascending mechanism does not seem to be effective with regards to this aspect and of-
ten produces high number of rules contrasting, as expected, the descending mechanism.
Figure 2 illustrates the compactness results.

Speed: The only significant difference w.r.t the speed of the learning methods has
been reported between DR and AWR favouring the former using Nemenyi test while
AWR has been reported to be significantly worst than PROGOL as illustrated by Figure3.

General Remarks: It can be seen that PROGOL by default performs badly amongst
all 10 methods presented as it always gets low rank and consequently plotted on the right
hand side of the three critical difference figures. We have seen that by just randomising
the seed examples, better results can be achieved. This suggests that when someone is to
apply an ILP system that induce rules based on individual seed examples, they should
ensure that seed examples are, at least, picked up randomly rather than sequentially.
Another way is to randomise the examples once at the beginning of the learning and
then go through them sequentially during the learning phase.

Descending methods generally generates the most compact models. This means
that the learning algorithm starts with the most difficult seed examples, at the top of
the training file. Those examples are assumed to be hard and hence, inducing rules
for them is more difficult than inducing rules for the examples that come later in the
training process. This consequently seems to force the learner to explore the hypotheses
space deeply to find good hypothesis that characterises such hard examples. Following
SAC strategy, examples which are covered by a newly induced rule are removed from
the training file. Since the few induced rules at the beginning are deeply searched and
characterise the class of interest (the positive class) well, it tends to cover many easy
examples (placed at the bottom of the training process) and thus few number of rules
are induced at the beginning resulting in compact models.

In contrast, ascending methods, not surprisingly, seem to give the opposite effect.
They seem to produce the largest models. Descend does the reverse by learning the
most easy examples first and induce some specific rules for them. These rules are not
good enough to be generalised over the most difficult examples toward the end of the
training file when such hard examples are encountered. As a results, the learner will
have to induce more rules for these hard examples encountered later during the learning
phase and consequently that results in generating larger models and more specific rules.

The speed of models appear to be correlated with their compactness, the higher the
number of rules the higher the running time and vice versa. This is because learning
few rules usually requires less time than learning a high number of rules due to the fact
that PROGOL starts a new search for a rule every time a new seed example is selected
and ignores the hypotheses considered previously following the covering algorithm.
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4 Conclusion

We have demonstrated the effect of selecting the seed examples for PROGOL and
showed that simple selection methods can affect the behaviour and consequently the
performance of such seed-example-driven ILP systems. Running PROGOL in the de-
fault mode generally does not yield good performance on all the chosen aspects (accu-
racy, compactness and speed of learning a model) when compared to the other methods.
Randomising the seed examples appears to be helpful to get some moderate improve-
ment of PROGOL performance at a very low cost. As for our new SSE methods, de-
scending methods (DR, DWR, DPR, and DWPR), usually get the highest performance
especially w.r.t compactness and speed aspects. Ascending methods, in contrast, gen-
erally get bad performance as can be expected and we have explained the reason why
this is happening at the end of Section 3. Our aim is fulfilled by highlighting the impact
of selection of seed examples on such seed-example-driven learning. We believe that
the use of advanced statistical methods will bring better insights and higher improve-
ments, and thus more work has to be done in this direction to determine the best way of
presenting the examples to the learners.
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Algorithm 1 Selecting Seed Examples with Rules
1: procedure LEARN(XTrain,XTest ,BK,MD)
2: Start[Stage1] // Learning basic model: basic rules
3: XTrainRand = RandomOrdering(XTrain)
4: LearnResults = PROGOL Learn(XTrainRand ,BK,MD)// Learning model
5: BR =CollectRules(LearnResults)// Extract rules from the learning model
6: End
7: Start[Stage2] // Selecting Seed Examples
8: DIF =CalculateDi f f iculty(BR,XTrain) // DIF is a |XTrain|× |BR| binary matrix
9: XDes = OrderExamplesDescending(DIF,XTrain) // XDes is XTrain with new order
10: XAsc = OrderExamplesAscending(DIF,XTrain) // XAsc is XTrain with new order
11: End
12: Start[Stage3]
13: TestResultsDes = PROGOL LearnTest(XDes,XT est,BK,MD)// Learning and Testing on Descend
14: TestResultsAsc = PROGOL LearnTest(XAsc,XT est,BK,MD)// Learning and Testing on Ascend
15: Out put TestResultsDes
16: Out put TestResultsAsc
17: End
18: end procedure
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Fig. 1. Post-hoc tests for comparing the accuracies of the 10 methods shown on Table 1.
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Fig. 2. Post-hoc tests for comparing the number of rules produced by the 10 methods shown on Table 1.
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Abstract. The goal of this project is to develop principled ways for the
coordination of a robot’s oculomotor system and the rest of its body mo-
tor systems. We propose the development of a coordination mechanism
within a concurrent decision making framework in order to control phys-
ical and perceptual actions in parallel. The problem is to decide which
physical actions to perform next and where should the robot’s gaze be
directed in order to gain relevant information about the environment.
These decisions are made based on the task being executed, the current
uncertainty of the environment and the expected reward that actions
might receive.
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1 Introduction

The oculomotor system in a robot is a resource with the main function of gaining
relevant information about the environment, so that the robot is able to make
better decisions. However, the oculomotor system must be shared amongst the
different actions the robot is performing. Furthermore, the resource is limited,
defined by the cameras’ field of view, and noisy, adding uncertainty to the prob-
lem. Therefore, a coordination mechanism must exist in order to control where to
direct the cameras (gaze control) whilst other physical actions are taking place.

The proposed coordination framework is being implemented and will be
tested using the iCub simulator[8] (Figure 1). A humanoid is best suitable for
our purposes since it has multiple degrees of freedom (DoF) and an oculomo-
tor system1. The problem then is to decide what the robot should do next in
terms of physical and perceptual actions, so that the task being performed is
accomplished successfully. Physical actions are produced by the different motor
systems in the robot, e.g. arms, hands, torso or legs, whereas perceptual actions
are camera movements. As shown in Figure 1, a simple task could be to pick up
objects from the table and put them inside the containers.

? This work is funded by CONACYT-Mexico.
1 In theory, our system could be adapted to work with non-humanoid robots, as long

as they provide several DoF and an oculomotor system.
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Fig. 1. Snapshot of the iCub Simulator.

The problem is formulated in a hierarchical concurrent decision making
framework based on Markov decision processes (MDPs) [9] and reinforcement
learning [12]. MDPs allow us to formally model a decision making problem in
terms of states, actions, transitions and rewards. An MDP can later be solved
via reinforcement learning, which is attractive because learning can take place in
an unsupervised manner. The robot then learns a policy, i.e. a mapping between
states to actions. This policy tells the robot what to do depending the state it
is in.

Real-world problems pose more difficulties not directly addressed by MDPs.
Real environments are normally partially observable, i.e. uncertainty about the
current state of the environment is present; this can be modelled using partially
observable MDPs (POMDPs) [6]. Actions might have different duration of time,
whereas MDPs assume single-step actions; this can be modelled via semi -MDPs
(SMDPs) [9]. MDPs execute one action at a time, however depending on the
DoF available parallel actions can be performed (For instance, a humanoid can
use both arms to pick up objects at the same time, while looking at a certain
point in space). Our framework tries to take into account these properties.

Section 2 presents a summary of related work, then Section 3 describes our
proposed framework. Section 4 explains the experiments to be carried out, and
Section 5 provides some final remarks. It is important to note that this is an
ongoing project and results are still not available.

2 Related Work

Current research on visual perception has focused on active vision and atten-
tional systems [3, 4, 14], where image processing techniques help to identify
regions of interest so that the robot can move the camera to get different images
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of one object. On this respect our main interest is not on the image processing
algorithms, but on incorporating visual perception as part of the decision making
process.

Sprague’s visually guided control [11] presents a way to coordinate physical
and perceptual actions. The agent first learns a set of behaviours modelled as
completely observable MDPs using reinforcement learning. During the execution
of the policy learnt, partial observability is added to the problem. The true state
of the environment is maintained via a set of visual routines (perceptual actions).
These routines process visual input and transform it into state values. Only one
visual routine can be executed at a time, thus the problem is to decide which
visual routine to select every time step. The goal is to keep the values of the state
variables updated, since these variables are used to decide which physical action
to perform next. The disadvantages with this framework are that physical and
perceptual actions are executed sequentially, instead of concurrently, actions are
single-step and assumes a single-motor system.

Rohanimanesh presents a concurrent decision making framework for the co-
ordination of actions [10]. He proposes two models: the concurrent action model
(CAM) and the coarticulation model. In both models it is possible to execute in
parallel a set of single-step actions and temporally extended actions. These ex-
tended actions are modelled as options [13]. Options are high-level actions where
it is possible to “look” inside them, since each option is composed of simpler ac-
tions. The models are based on SMDPs [9], the difference with normal MDPs
is that SMPDs allow the use of durative actions, instead of just single-step ac-
tions. The disadvantages are that these models assume a completely observable
environment and no perceptual actions are taken into account.

Concurrent MDPs [7] are capable of modelling concurrent planning problems,
where the time actions take to complete is part of the cost of executing such
actions. The generalised SMDP [16] models problems with multiple asynchronous
events and actions. As with Rohanimanesh’s models, these do not take into
account partial observability and perceptual actions.

3 Coordinating Gaze and Actions

We propose a hierarchical concurrent decision making framework for the coor-
dination of physical and perceptual actions.

3.1 How the System Works

Figure 2 illustrates the interaction between components in our system. The sys-
tem works in the following way:

– The robot first learns to perform a particular task keeping its policy in
memory. Learning occurs in a completely observable environment, thus no
perceptual actions are learnt.
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Fig. 2. Interaction of the system’s components.

– Physical arbitration is in charge of selecting the physical actions that should
be performed every decision epoch. This selection is based on the policy and
the belief about the state of the environment.

– The selected actions are sent to the corresponding motor system (e.g. left
arm or right arm) and are executed in parallel. Actions will likely change
the environment.

– At the same time, perceptual arbitration selects amongst the perceptual ac-
tions currently available. Each perceptual action defines a location at which
the robot’s gaze can be fixated. The idea is to choose the perceptual action
that maximises the value of the physical action with the highest risk of losing
reward.

– The perceptual action makes the oculomotor system move the cameras to-
wards a specific part of the environment. Here we consider a stereoscopic
visual system.

– The oculomotor system extracts relevant information from the visual input
to update the current state of the environment.

– The current state of the environment is an estimate of the true state, and is
degraded due to noise and the cummulative error in the estimate.

3.2 Modelling the Task

The task is modelled using a variation of the CAM formulation2. The model is
formalised as a tuple 〈S,O,P,R, T 〉, where S is the set of states, O is the set
of options (temporally extended actions), P : S × p(O) × S × N � [0, 1] is the

2 For a detailed explanation of the model please refer to chapter 3 of [10]
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transition probability distribution, where p(O) is the power set of options and
N is the set of natural numbers, R : S ×O � R is the reward function, and T is
the concurrent termination mechanism. The power set allows us to select a set
of options every decision epoch, which we call a multi-option. The set of natural
numbers is used to define the time it takes to execute each option.

Because CAM is based on SMDPs, it is possible to use SMDP Q-learning
[1] for learning. A policy is defined as the mapping from states to multi-options:
π : S � p(O). A multi-option contains options that are executed in parallel and
are mutually exclusive.

3.3 Learning Phase

Learning takes place at two different levels of abstraction:

– At the higher level, the robot learns the task modelled by CAM using SMDP
Q-learning.

– At the lower level, the robot learns the policy for each option used at the
higher level.

Each option is modelled as O = 〈M, I, β〉, where M is an MDP, I is the
initiation set I ⊆ S, denoting the set of states in which the option can be
initiated, and β : S � [0, 1] represents a termination condition.

An MDPM is formalised as a tuple 〈S,A,P,R〉, where S is the set of states,
A is the set of single-step actions, P : S × A × S � [0, 1] is the state transition
function represented as P(s, a, s′) being the probability of transition from state
s to state s′ after action a is executed, and R : S×A � R is the reward function
written as R(s, a) being the reward of taking action a in state s.

Q-learning [15], a reinforcement learning algorithm, is used for learning each
option. A policy at this level is defined as the mapping from states to single
actions.

3.4 Physical Action Selection

Having a policy, and assuming the state of the environment is always known,
the robot just needs to follow such policy by checking the current state of the
environment and executing the best action for that particular state. However,
adding partial observability to the problem means that the current state of the
environment is not completely known. Thus, the robot needs to decide what to
do based on an estimate of the true state of the environment.

The problem is to create a selection mechanism that takes into account the
belief of being in a particular state. Furthermore, this action selection must be
done at both levels, first the robot needs to select a multi-option, and then, select
single-step actions for each option.

For both levels, action selection can be done based on the Q-MDP algorithm
used to find approximate solutions to POMDPs [2, 5]. First, the robot selects a
multi-option according to:
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oE = arg max
o

∑
s

bel(s)Q(s,o) (1)

Where oE represents the multi-option with the highest expected reward,
according to the belief bel(s) of being in state s, and Q(s,o) is the Q-value
previously learnt. A multi-option is represented using bold face (e.g. o).

Once a multi-option is chosen, we need to select the single-step actions for
each active option:

aiE = arg max
a

∑
si

bel(si)Q(si, a) (2)

Because each option i have a different duration it is possible that one option
in a multi-option finishes before the others. Therefore, every time an option
terminates the control passes to the higher level. However, the action selection
at this moment will have to take into consideration the remaining unfinished
options. It is possible to resume the execution of an option if it is modelled as a
Markov option3.

3.5 Perceptual Coordination

The selection of good physical actions depends almost entirely on having the
correct state information. Thus, it is essential to have a good mechanism for the
selection of perceptual actions. We follow an approach similar to [11].

As explained above, perceptual actions are not learnt but planned. Since
there is only one oculomotor system, it must be shared amongst the different
actions currently being executed. The problem is of deciding where to direct the
cameras in order to gather relevant information about the environment.

Similarly to the selection of physical actions, perceptual actions can be chosen
at both levels. At the higher level, perceptual coordination is given by:

pH = max
p

∑
σ

[
P (σ | bel, p) max

o

∑
s

belσ,p(s)Q(s,o)

]
(3)

In words it means to pick a perceptual action that maximises the expected
return of the multi-option that is going to lose more reward if it is not given
access to perception. P (σ | bel, p) is the probability of having observation σ given
the current belief and taking perceptual action p. And belσ,p(s) is the belief that
results assuming perceptual action p is taken and observation σ occurs. At this
level, perceptual actions can be more general, e.g. look at the table instead of
looking at a specific object.

At the lower level, perceptual coordination is defined with a similar equation
but now taking into account the single-step action for each option being executed:

3 The Markov property means the present state determines the future states, i.e. the
past is not taken into account.
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pL = max
p

∑
σi

[
P (σi | bel, p) min

i
max
ai

∑
si

belσ
i,p(si)Q(si, ai)

]
(4)

Here the robot will pick the perceptual action pL, such that the value of the
“worst” action any option i picks is maximised.

By considering camera movements as perceptual actions, it is necessary to
define the different locations at which the robot might want to look at. Fur-
thermore, these locations should be generated during execution time, since for
each instance of the task objects have different locations. This is also one of the
reasons why perceptual actions are not learnt.

Because our main concern is testing the coordination mechanism, we will
make the assumption that the object locations are known to the robot. Thanks
to the simulator we can know the locations of the objects and we can provide
this information to the robot. Thus, there is no need at this moment for the
robot to process visual input. Our main goal is for the robot to fixate on the
object that is essential at any given moment in order to increase its certainty
about features of the object (e.g. its location, orientation, category, etc.). This
information will be modelled as probability distributions.

4 Experiments

For now, experiments are being carried out using the iCub simulator [8]. The
advantage of simulation is that it is possible to have higher control of the robot
and the environment (Figure 1 shows a snapshot of the simulator).

The first task we are interested in solving is simple but enough to test our
coordination framework. The goal is to pick all the objects from the table and
then put them inside either one of the containers. By not restricting the container
in which the objects should be placed, we avoid possible collisions with the arms
and the need to switch the object from one hand to the other. Nevertheless, our
aim is to model also this latter problem and more complicated tasks (e.g. the
colour of the object could determine in which container should be placed).

There are several properties to evaluate in our model. The most important
one is the coordination mechanism, in particular the decision of which perceptual
action to perform. To evaluate our model we need to compare it with other
decision mechanisms, e.g. random selection of perceptual actions and scheduling
algorithms, such as round robin.

Concurrency is another property to be evaluated. In theory, concurrent ac-
tions seem a better choice for a robot with multiple DoF. This also depends on
the tasks, some tasks are sequential in nature. For evaluation we can compare
our model with its sequential counterpart.

5 Conclusions

The problem of how to coordinate gaze and actions in a robot is posed in terms
of a concurrent decision making framework, where camera movements are a
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consequence of the current uncertainty about the environment and the reward
expected to be recieved by performing some actions. Here, we have defined the
problem and proposed a framework to solve such problem.

The implementation of such framework is been realised at the moment and
experiments will soon be carried out. We are confident that the results to be
obtained will provide a more efficient way for the coordination of physical and
perceptual actions.
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Abstract. Cell Assemblies (CAs) are central to many higher order cog-
nitive processes such as perception, recognition, and recollection. Con-
cepts are encoded as neuronal CAs in mammalian cortical areas, where
CA formation and learning happen based on the Hebbian CA theory.
Multiple CAs may share a common subset of neurons that produce dy-
namics that distinct, localist, orthogonal CAs do not exhibit, such as
inherent support for generalisation and learnt novelty. This paper dis-
cusses implicit learning of novel behaviour in overlapping CAs, with a
simulated agent based on a biologically realistic neural CA model.
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1 Introduction and Background

The CA [1] is the neural basis of the fundamental cognitive process of associa-
tive memory, and is the basis of many higher order phenomena [2], [3], [4], [5],
[6], [7]. It is a reverberating circuit of spatially distributed groups of neurons
that have high mutual synaptic strength [8]. Formation of CAs account for long
term memory and their reverberating behaviour accounts for short term mem-
ory. CAs are learnt by a Hebbian learning rule, whereby modifications in the
synaptic transmission efficacy are driven by correlations in the firing activity
of pre-synaptic and post-synaptic neurons [9]. That is, repeated co-activation
of neurons by a stimulus causes an increase in their mutual synaptic strength
leading to the formation of a CA that is bound to the stimulus.

A CA may be activated when a subset of its neurons fire. The high mutual
synaptic strength of its constituent neurons may cause it to reverberate as its
neurons undergo cascades of activation, even after the stimulus that triggered it
is removed. If the group of firing neurons happen to belong to more than one CA,
activity may spread to other CAs. Prolonged co-activation may cause different
CAs to merge, and learnt lateral inhibition may cause certain parts of a CA to
overpower other parts, eventually forming separate CAs as a result of competitive
learning. Such behaviour of overlapping CAs exhibit many interesting dynamics
that disjoint CAs do not, such as the inherent ability to learn novel concepts
and behaviour.
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This paper discusses the nature of such overlapping CAs with a simulated
agent that acquires novel behaviour via implicit, unsupervised learning. The
agent is capable of moving in a virtual environment in three directions. The
agent capable of animation is chosen so as to better visualise learnt novelty.

2 Network Architecture

The model discussed in this paper uses a neural network with simulated CAs
based on fatiguing Leaking Integrate and Fire (fLIF) neurons that share many
common characteristics with biological neurons [10]. fLIF neurons are an ex-
tension of the LIF (Leaky Integrate and Fire) model [11], [12]. fLIF neurons
collect activation from pre-synaptic neurons and fire on surpassing a threshold,
that is, they integrate and fire [13]. On firing, a neuron loses its activation level.
Otherwise, the activation leaks gradually, resembling the behaviour of biological
neurons.

The activation A of a neuron i at time t is:

Ait =
Ait−1

δ
+

∑
j∈Vi

wijsj (1)

The current total activation is the remnant activation from the last time step
divided by decay factor δ, plus incoming activation. This new activation is the
sum of the active inputs sj of all neurons j ∈ Vi, Vi being the set of all neurons
connected to i that fired at t − 1, weighted by the connection from neuron j
to i. The neuron fires when the accumulated activation A exceeds a threshold
θ. Firing is a binary event determined by a Heaviside function, and activation
of wij is sent to all neurons j to which the firing neuron i has a connection.
Fatiguing causes the threshold to be dynamic, θt+1 = θt+Ft. Ft is positive (F+)
if the neuron fires at t and negative (F−) if it does not. An increase in threshold
causes the total amount of activation required for a neuron to fire to increase.
This makes it difficult for a neuron to fire after many steps of frequent firing.
Similarly, the threshold of a neuron decreases with each step it does not fire.

The simulated agent is driven by a network of 4000 fLIF neurons with dis-
tance biased connections [10]. The network is a rectangular array of neurons
with distance organised toroidally. This topology makes it likely for a neuron to
have excitatory connections to neighbouring neurons, and less likely to far away
ones. Inhibitory connections in the network are set up randomly. The connectiv-
ity rule for excitatory neurons is given by Equation 2. There exists a connection
between neuron i and j of a network only if Cij = 1.

Cij = 1, if r < (1/(d ∗ v)) (2)

Cij = 0, if not

where r is a random number between 0 and 1, d is the neuronal distance and v
is the connection probability. This indicates that connections in a network are
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influenced by distance between neurons and the connection probability factor.
Distance d = 5 throughout all the simulations, as it has been observed to work
well. Inspired by the biological neural topology, long distance intra-network con-
nections are also present, connected by long distance axons with many synapses
[15].

3 Learning Cell Assemblies

Learning in the network is driven by a correlatory Hebbian learning rule [1],[16],
by which synaptic connection weights are modified based on the following equa-
tions:

∆+wij = (1− wij) ∗ λ (3)

∆−wij = wij ∗ −λ (4)

wij is the synaptic weight from neuron i to j and λ is the learning rate. During
each cycle, weights change based on the state of pre-synaptic and post-synaptic
neurons. If both neurons co-fire, the weights increase as per the Hebbian rule
(Equation 3). If only the pre-synaptic neuron fires, weights decrease as per the
anti-Hebbian rule (Equation 4). Thus wij changes and approximates k, the like-
lihood of j firing if i fires.

Each neuron in the network is either excitatory or inhibitory, where all
synapses leaving the neuron are either excitatory or inhibitory [17]. A simi-
lar learning rule applies to inhibitory neurons that makes the synaptic weight
approximate k− 1, where k is the likelihood that the post-synaptic neuron fires
when the pre-synaptic neuron fires.

Thus, the recruitment of neurons to different CAs may be due to repeated co-
presentation of similar or ambiguous stimuli that increase their mutual synaptic
strength. This suggests that events that tend to co-occur should somehow be-
long together. Every time these events occur in conjunction, they drive certain
subgroups of neurons to fire in correlation, resulting in the association of the
respective events [8]. Shared bit patterns in the Hopfield model are examples of
a computational CA model [18].

Prior models based on disjoint CAs have been used to encode spatial maps,
sequential, and many to many associations [10], but they show a relatively high
degree of deterministic behaviour that arises from the limited ability to acquire
novelty by learning due to the disjoint topology of learnt CAs. Furthermore,
biological CAs in the brain are known to be of overlapping nature [14].

4 The Simulated Agent

The agent is able to perform three actions, move up, move right and move left,
driven by three CAs. The CAs are labelled UP, RIGHT and LEFT respec-
tively. Each action is executed based on the activation level of its corresponding
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CA. For instance, if UP has 20% of its neurons active, the agent moves up 20%
of a unit distance.

Since all three CAs are in the same network, they have excitatory and in-
hibitory connections with each other. Training runs for 600 cycles 1, where pat-
terns corresponding to UP, RIGHT and LEFT are presented for 200 cycles in
succession, so that their respective CAs are learnt. The test phase lasts for 300
cycles, where random neurons of each of the three CAs are excited for 100 cycles
each. That is, at cycle 0, UP is excited; at cycle 100, RIGHT is excited; at cy-
cle 200, LEFT is excited. During the test phase, the agent executes movements
based on the activity levels of CAs corresponding to the three actions.

The test is run in two separate modes; one with disjoint, orthogonal CAs,
and one with overlapping CAs. The agent’s movements in each mode is recorded
so as to compare the behaviour emerging from orthogonal and overlapping CAs.
The simulation was run on ten different network configurations and the results
were found to be consistent. The results from one such run are presented below.

4.1 Behaviour from Orthogonal CAs

The patterns for each of the three CAs are presented for 200 cycles each in suc-
cession. The CAs are disjoint and do not share neurons. Each CA consists of
33% of the neurons of the entire network. The test was repeated on 10 different
network configurations and the paths taken by the agent were found to be con-
sistent 100% of the time. Figure 1 shows the path taken by the agent in the 300
cycles of test on one such run.

Since the first CA to be excited is UP, at the 0th cycle, the agent starts
moving UP. Similarly, at the 100th cycle, the agent starts moving RIGHT,
and at the 200th cycle, the agent starts moving LEFT. Each of these actions
continue for 100 cycles. The disjoint nature of the CAs mean that the absence of
shared neurons cause an active CA to suppress other CAs via learnt inhibitory
connections. When the UP CA is active, the agent is solely moving UP without
any deviations as other CAs are completely inactive. This is indicated by the
linearity of the movements plotted in the figure. The dotted line marks the centre
of the environment, at the base of which the agent starts.

4.2 Behaviour from Overlapping CAs

In the mode with overlapping CAs, the patterns share a 25% overlap of their con-
stituent neurons with each other, where UP and RIGHT overlap, and RIGHT
and LEFT overlap. That is, UP and RIGHT share 25% of each other’s neu-
rons, and RIGHT and LEFT share 25% of their neurons. UP and LEFT do
not physically overlap, but over the course of learning, they form shared sub-CAs
via their overlaps with RIGHT.

1 One cycle is 10 milliseconds in simulated time, when the neural network is updated
based on the Hebbian learning rule (Section 3).
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Fig. 1. Path taken by the agent with orthogonal CAs

The patterns for each of the three CAs are presented for 200 cycles each in
succession in the training phase, so that their corresponding CAs are learnt. In
the test phase, each of the three CAs are partially excited for 100 cycles one
after the other.

Figure 2 shows the path taken by the agent over the course of the test. The
path is visibly erratic compared to that in Figure 1, and the agent seems to have
moved UP, RIGHT, and LEFT at the same time at relatively the same rate.
The largest deviations in the path are at cycles 0, 100 and 200 respectively, when
the corresponding CAs receive external excitation. Over the next few cycles, the
movement settles into novel pseudo-stable states which seem to be combinations
of all three CAs.

5 Discussion and Conclusion

The simulated agent with overlapping CAs has been shown to develop novel
concepts from the three base CAs it was trained with. The resulting behaviour
is dynamic, compared to the relatively deterministic behaviour from orthogonal
CAs. The novel pseudo-stable CAs formed from the overlaps change over the
course of time, via implicit learning.

The CA model used in the simulation is based on fLIF neurons that have
biological plausible characteristics such as distanced biased topology, and exci-
tatory and inhibitory properties. CAs in the network are learnt gradually over
a course of many cycles via external stimuli.

The agent driven by overlapping CAs manages to learn implicit sub-actions
dynamically from varying combinations of the base actions UP, RIGHT and
LEFT, as indicated by the nature of its movement. Figure 2 shows movements
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Fig. 2. Path taken by the agent with overlapping CAs

such as UP-RIGHT, UP-LEFT, UP-RIGHT-LEFT and LEFT-RIGHT.
Even though there is no physical overlap between UP and LEFT, UP-LEFT
seems to have emerged from their interactions with RIGHT. Also, the strength
of these novel pseudo-stable combinations appear to vary dynamically over the
course of time, where for instance, UP-RIGHT is dominant compared to UP-
LEFT at certain points.

Overlapping CAs overcome the relatively deterministic behaviour that dis-
joint CAs (or other similar models) exhibit. They introduce a certain degree
of randomness that eventually settle to pseudo-stable sub-states leading to the
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emergence of many interesting dynamics, which many other esoteric models seem
to lack. Another benefit of overlapping CAs are their inherent support for gen-
eralisation [19], where prototypicality emerges from CAs that share common
attributes. Also, neurons shared between different CAs have the ability to par-
ticipate in different kinds of information processing [20]. Overlapping CAs may
also help overcome capacity constraints in neural networks, where shared neu-
rons make it possible to have more CAs than the total number of neurons in a
network [21].

While the above discussed simulation demonstrates how overlapping CAs
can implicitly acquire novelty, other simulations have used overlapping CAs to
model different cognitive tasks [22], [23]. It is also suggested that human cortical
semantic memories are distributed and overlapping in nature [24]. This would
enable unique episodical memories and context-free information to be encoded
as a part of a larger semantic network, where overlapping patterns may make
possible distributed access to the entire knowledge structure [25].

It seems likely that overlapping CAs, with their inherent ability to learn
novelty among many others, are important for implementing biologically real-
istic neural models. This work is intended at furthering the understanding of
dynamics of neural processing.
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Abstract. This paper discusses work on morphological segmentation under 
a non-parametric Bayesian framework. We show that the statistical 
properties of text can be captured by employing the cache of morpheme 
frequencies. We analyze this system for English and Nepali text. Standard 
test dataset for English is readily available as part of the Morpho Challenge 
experiment. However such a resource does not exist for Nepali. This paper 
also describes the dataset we have constructed for Nepali.  

1   Introduction 

Morphology is study of the internal structure of words. Morpheme segmentation 
is the process of segmenting words into their constituent segments. These 
segments are stems (or roots) and affixes.  Linguistically, word must have at least 
one stem. The affix present before and after the stem is known as prefix and 
suffix respectively. A word can have more than one affix. In the case of 
compound words, more than one stems are present. 

Table 1.  Morphological structure of English word “unsegmented” and similar 

Nepali word “नटु�याइएको (indirect form)”.  

Word Segments(Morphs) 

unsegmented un(prefix) + segment(stem) + ed(suffix) 

नटु�याइएको न (prefix) + टु� (stem) + आइ (suffix) + एको (suffix) 

  

 
We consider the process of adding affixes to the stem as the primary way to 

induce word variations. In this paper, we present an unsupervised approach to 
morpheme induction utilizing the frequency of morphemes derived from the 
corpus. It is a well established notion that words in a corpus follow a power law 
distribution [18]. Dirichlet Process (DP) is the distribution over distributions.  
The same distribution can be achieved by Chinese Restaurant Process (CRP) [17]. 
CRP provides the mathematical framework of producing power law distribution. 
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This paper is organized as follows. Section 2 reviews the related work on 
unsupervised morphology learning. Section 3 describes the learning model and 
the data structure of the system. Section 4 describes training and testing phase 
with evaluation of results. Finally Section 5 provides discussion on the results and 
further extension. Section 6 concludes the paper. 

2   Related Work on Unsupervised Morphology 

There has been lot of work done in the area of unsupervised learning of 
morphology. Earlier work [1, 2, 3], used statistical properties such as successor 
and predecessor variety count of words in a corpus to indicate the morpheme 
boundaries. Additionally, the transitional probabilities of word appearing as 
substring of another word used to detect the morpheme boundaries [4]. Further, 
the basic RePortS algorithm [4] is extended by employing better morpheme 
induction and segmentation strategies. In [9], the equivalence sets of letters are 
generated with the help of small edit distance word pairs and improve the results 
for German language. In [10, 11], language specific heuristics are added for 
composite suffix detection, incorrect suffix attachments and orthographic changes 
during model learning.    

The other well known approaches in unsupervised morphology learning are 
based on the application of the Minimum Description Length (MDL) principle 
[12]. In [5], MDL prior is used to represent the optimal segments of the corpus. 
Further, [6] uses the prior distributions of morpheme frequency and morpheme 
length to measure the goodness of induced morphemes. The work [7], focuses on 
the stem+suffix languages. The stem forms group called signature and each 
signature shares a set of possible affixes and uses the MDL techniques for model 
optimization. 

The probable morphologically related word pairs are generated using 
orthographic similarity in terms of edit distance and semantic similarity in terms 
of mutual information (MI) measures [8]. The stem-suffix paradigms for a 
language are induced by grouping all stem+suffix pairs of words [13]. The 
induced paradigms help to analyze the given word as certain or possible for 
segmentation. In [14], the paradigm are learned using the syntactic information 
i.e. PoS of word. In [16], the word families (clusters) of morphologically similar 
words are identified by building a graph where the nodes are words and the edges 
are the transformational rules. The community detection method described by 
Newman [15] is used for the identification of word-families. The given words are 
segmented with the help of these induced families and the morphological 
transformation rules.  

In [21], the non-parametric Bayesian framework is defined to learn the 
Probabilistic Context Free Grammar (PCFG) rules through Adapter Grammar. In 
morpheme segmentation, these rules generate the morphemes and the adapter 
effectively learns the morphemes of its language.  It uses the adapter based on 
Pitman-Yor process [17] to specify the distributions used in non-parametric 
Bayesian statistics such as Dirichlet process [17, 19, 20].  In [22], the adapter 
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grammar framework is used in unsupervised word segmentation for Sesotho. In 
[25], the adapters based on Chinese Restaurant Process and Pitman Yor Process 
model the distribution of words and are used for word segmentation. 

3   Model Description 

We develop following two models for the morphological segmentation. 
 
3.1   Basic Model 

 
This model is extremely simple and assumes that the words are independent units 
of language. Possible morpheme candidates are generated by splitting the word 
into all possible two parts. We further make the same independence assumption 
regarding the generated morpheme segments. These morphemes and morpheme 
weights are stored in cache. The weight of a morpheme is derived from the 
frequency of parent words.  

The morpheme segments in this model are represented as the menu items in a 
restaurant as shown in fig. 1. The words are analogous to the customers and can 
choose the item from the listed menu or can choose new item. We split a word in 
all possible two parts. If the proposed segment is available in the cache of menu 
list then the model choose it from listed menu and if not, it will select the segment 
as new menu item and will add to the menu list. Initially there is no item in the 
cache of menu list (morphemes). 

Let m1,...,mk be the morphs present in the cache. Dirichlet Process sampler uses 
the following relation to define the predictive probability of next morph mk+1: 
 
 

If mk+1 ∈ cache. 
 

If mk+1 ∉ cache then cache :=  

cache ∪ { mk+1}.  mk+1 ~ G0.                    
             (1) 

 
where, H is count of previously processed morphemes, N is the number of 

parent words contained by the morph mk+1 and G0 is the base distribution. The 

concentration parameter α > 0 determines the variance in the probabilities of 

morphs i.e. higher the value of α, higher number of morphs according to the 
number of input words. This part captures the morphemes frequency behaviour in 
the corpus which obeys the power law distribution. Equation (1) can be derived 
using conjugacy of Multinomial-Dirichlet distribution [20]. Hence, the final 
probability of morpheme segment is given by equation (2). 
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For example, all the possible two parts segments of word “chunked” are: 
c+hunked, ch+unked, chu+nked, chun+ked, chunk+ed, chunke+d, chunked+$.  
We calculate the probability of each using equation (2).  For example, the 
probability of “chunk+ed” is: 

 
  
 

Value of α is constant and G0 is uniform for all morpheme segments. Initially, 
H=0 and is updated according to the number of words processed during the 
learning.  For a word with n possible splits, we compute the probability of each 
split P1,...,Pn. For example, for the word “chunked”, we get 7 possible split 
probabilities P1,...,P7. We then normalize the n probabilities obtained for all splits 
and calculate the weighted probability relation (3). 

 
Weighted Probability = Normalized Probability × Frequency of word          (3) 

 
where, Normalized Probability =              for all 1 ≤ k ≤ n.   
 
 
 
Finally, we update the weighted probability in the cache for each morpheme 

segment as morpheme weight.  
 

 
 

Fig. 1. Cache representation of morphs “$”, “chunk”, “ed”, “un”, “segment”. 

 
In Fig. 1, the boxes represent the word and ovals represent the morpheme 

segment. These are the part of cache.  In oval, a morpheme “ed” is connected 
with “segmented” and “chunked”. Hence, the weight for “ed” is derived from the 
words “segmented” and “chunked” and stored in cache. Similarly, the weights of 
other morphemes are derived. 
 
3.2   Grammar Model 

 
In the basic model, we consider the segments set and all morphemes to be in same 
cache model.  In this section, we extend our model by distinguishing prefix, stem 
and suffix distribution of a word. We assume that a word can have prefix, stem 
and suffix in their successive positions and the probability is given by: 
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(4) 
 
In (4) Mprefix, Mstem and Msuffix are the respective morpheme models for prefixes, 

stems and suffixes. We built the respective cache for each model.  Equation (4) 
can be divided into 3 parts and rewritten as, 

 
 
 
where, 

 
 
 
 
 
 
 
During model learning, we update the models Mpref and Mstem with probability 

P1. Similarly we update the respective models with probability P2 and P3.  

 
Fig. 2. Model update mechanism of a word having n segments set.  
 
For example, in segments “chunk+ed”, with probability P1 “chunk” is 

considered as prefix and “ed” is considered as stem. Similarly with probability P2, 
“chunk” is considered as stem and “ed” is considered as stem too. Finally, with 
probability P3, “chunk” is considered as stem and “ed” is considered as suffix. In 
this way, we update the probabilities of n number of two parts segments in each 
model for a word as shown in fig. 2.  
 
3.3   Segmentation 

 
We have used two techniques to get the final segments of a word. In the first 
technique, segment with the highest weighted probability (using equation (3)) is 
selected. This is Maximum a Posteriori (MAP) estimation of segments given the 
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model. Initially, the weights of all two parts segments for a word are assigned to 
zero and updated by the weighted probability. After completion of all iterations, 
we choose the segment set having maximum weight for a word. This method will 
only give two segments of a word.  

In second approach, we align the morpheme sequence using dynamic 
programming i.e. Viterbi alignment to find the best morpheme sequence 
according to weighted probability measure. In grammar model, we use the 
following criteria to validate the candidate morpheme sequence to be aligned. 

Let m1, m2, . . . ,mn be the morpheme sequence of a word. Then,  

a. At least one of mi should be in a stem category. 
b. Stems can alternate with prefixes and suffixes but mn can’t be prefix and m1 

can’t be suffix of words. 

c. For 1<  i ≤ k, if mi is a prefix, then mi+1 must be a stem or a prefix. 

d. For 1 < i ≤ k, if mi is a suffix, then mi-1 must be a stem or a suffix.  

The same test strategies are applied in [10] & [11] to validate the 
segmentation of a word among its all possible segmentations. 

4   Evaluation 

4.1   Dataset Preparation  

 
In our experiment for English, we used the training and test set provided by the 
Morpho Challenge [24]. The training set contains 167,377 distinct words from 
24,447,034 words. In test set, it contains 532 distinct words.  

In case of Nepali, we extracted our corpus from daily news papers as well as 
the weekly, half monthly and monthly magazines during 2009-10. We pre-
processed it to create word-frequency list as input of our system. This corpus 
contains 819,506 distinct words from 44,856,552 words. We have tested our 
model on basic Nepali verbs only. The test set is prepared by manual 
segmentation of 1,500 randomly selected distinct words from the training set. We 
took out all the verbs as training set from the corpus which contains 34,391 
distinct words. 
 
4.2   Evaluation Metric 

 

Evaluation scripts are provided by the Morpho Challenge [24] along with training 
and test dataset. We used the same evaluation metrics described in Morpho 
Challenge [24]. The Precision (P), Recall (R) and F-Measure (F) are calculated in 
terms of morpheme boundary detection. These are calculated using the following 
formula. 

 
(5) 
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(6) 

 
 

(7) 
 

 
where, H is the count of correct boundary hits, I  the count of boundary 

markers incorrectly positioned and D the count of boundary markers not placed. 
These counts are based on comparison with the gold standard. For example, if the 
word “sprinting” is segmented as “s+print+ing”, where ‘+’ is the boundary 
marker, then the first ‘+’ is counted as an incorrect boundary insertion and the 
second ‘+’ is counted as the correct boundary hit (comparing with the correct 
segmentation “sprint+ing”). Similarly, in case of “un+segmented”, the first ‘+’ is 
counted as a correct hit. It also counts the missing boundary in between 
“segment” and “ed”. In our system, we counted all the insertion, deletion and 
correct boundary hits of the test words and used the above equations (5), (6) and 
(7) to evaluate Precision (P), Recall (R) and F-Measure (F) respectively.  
 
4.3   Results 

 

We performed the evaluation on both English and Nepali dataset described in 4.1.  
We applied our both systems described in sections 3 with this dataset. We set the 

value of α to 1000 for our experiments. We also set the minimum length of a 
word to 4 for segmentation. The evaluation metric described in 4.2 gives the 
below results. 
 
Table 2. Evaluation results of the Basic Model.  
 

Language Precision (P) Recall (R) F-Measure (F)  

English 56.84% 46.18% 50.96% 
Nepali 51.25% 37.19% 43.10% 

 
Table 3. Evaluation results of the Grammar Model assuming two segments only. 
 

Language Precision (P) Recall (R) F-Measure (F)  

English 58.65% 47.60% 52.55% 
Nepali 53.16% 38.12% 44.40% 

 
Table 4. Evaluation results of the Grammar Model assuming the multiple 
segments. 
 

Language Precision (P) Recall (R) F-Measure (F)  

English 45.81% 22.12% 29.83% 
Nepali 53.92% 43.58% 48.20% 
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5   Discussion & Future Work 

The above results are not good as compared to the current unsupervised 
morphological state of the art for English [27]. The best system in terms of F-
Measure achieved 62.31% [23]. One possible explanation comes from the Zipfian 
nature of words in a corpus. So, the highly frequent words have greater influences 
thereby degrading the quality of segments and estimates based around identifying 
best segments. The result given by the grammar model is improved in the MAP 
estimation where the weights of frequently occurred morphemes are distributed 
among prefixes, stems and suffixes.  

For Nepali there is no benchmark to compare our unsupervised approach. In 
our experiment the Grammar model shows improvement over the basic model. 
This is not the case for English where we see degradation in performance (see 
Table 2, 3 and 4). This is due to the nature of our test set where we have chosen 
verbs only and with a single stem. 

Our model makes use of word frequencies alone as a way to capture the 
context which results in inefficient performance. For example, it leaves out many 
words unsegmented i.e. segmented with null suffix. Furthermore, the over 
segmentation error in best sequence alignment occurs due to the influence of most 
frequent morphemes. We plan to extend this system by employing the 
Hierarchical Dirichlet Process (HDP) [26] which should be able to overcome the 
influence of heavily weighted morphemes.  

6   Conclusion  

In this paper, we have described the task of morphological analysis by capturing 
the statistical properties of words. Our result shows that the morpheme behaviour 
follows the power law and this characteristic can be captured to segment the 
words into morphemes. However the same behavior can lead to over 
segmentation and we believe HDP to be able to reduce the bias. In addition to our 
model, to our knowledge, this paper describes the first results in unsupervised 
morphological segmentation for Nepali. 
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